skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production

Abstract

In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10 -3 mA cm -2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.

Authors:
 [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1224983
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; chemical sciences; inorganic chemistry

Citation Formats

Gao, Min -Rui, Chan, Maria K. Y., and Sun, Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. United States: N. p., 2015. Web. doi:10.1038/ncomms8493.
Gao, Min -Rui, Chan, Maria K. Y., & Sun, Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. United States. doi:10.1038/ncomms8493.
Gao, Min -Rui, Chan, Maria K. Y., and Sun, Yugang. Fri . "Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production". United States. doi:10.1038/ncomms8493. https://www.osti.gov/servlets/purl/1224983.
@article{osti_1224983,
title = {Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production},
author = {Gao, Min -Rui and Chan, Maria K. Y. and Sun, Yugang},
abstractNote = {In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10-3 mA cm-2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.},
doi = {10.1038/ncomms8493},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 121 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Hydrogen Economy
journal, December 2004

  • Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.
  • Physics Today, Vol. 57, Issue 12
  • DOI: 10.1063/1.1878333

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
journal, January 2015

  • Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6982

Nickel/Nickel(II) Oxide Nanoparticles Anchored onto Cobalt(IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen
journal, July 2013

  • Xu, Yun-Fei; Gao, Min-Rui; Zheng, Ya-Rong
  • Angewandte Chemie International Edition, Vol. 52, Issue 33
  • DOI: 10.1002/anie.201303495

Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices
journal, January 2013

  • Gao, Min-Rui; Xu, Yun-Fei; Jiang, Jun
  • Chemical Society Reviews, Vol. 42, Issue 7
  • DOI: 10.1039/c2cs35310e

First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction
journal, January 2013

  • Kong, Desheng; Cha, Judy J.; Wang, Haotian
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42413h

Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
journal, January 2014

  • Faber, Matthew S.; Jin, Song
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01760A

Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production
journal, January 2012

  • Gao, Min-Rui; Lin, Zhao-Yang; Zhuang, Tao-Tao
  • Journal of Materials Chemistry, Vol. 22, Issue 27
  • DOI: 10.1039/c2jm31916k

Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution
journal, January 2012

  • Laursen, Anders B.; Kegnæs, Søren; Dahl, Søren
  • Energy & Environmental Science, Vol. 5, Issue 2
  • DOI: 10.1039/c2ee02618j

Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts
journal, July 2014

  • Morales-Guio, Carlos G.; Hu, Xile
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5002022

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction
journal, April 2014

  • Yan, Ya; Xia, BaoYu; Xu, Zhichuan
  • ACS Catalysis, Vol. 4, Issue 6
  • DOI: 10.1021/cs500070x

A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction
journal, January 2014

  • Liao, Lei; Wang, Sinong; Xiao, Jingjing
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42441C

Ultrahigh Hydrogen Evolution Performance of Under-Water “Superaerophobic” MoS 2 Nanostructured Electrodes
journal, February 2014


MoS 2 Quantum Dot-Interspersed Exfoliated MoS 2 Nanosheets
journal, April 2014

  • Gopalakrishnan, Deepesh; Damien, Dijo; Shaijumon, Manikoth M.
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn501479e

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution A Functional Design for Electrocatalytic Materials
journal, October 2011

  • Chen, Zhebo; Cummins, Dustin; Reinecke, Benjamin N.
  • Nano Letters, Vol. 11, Issue 10, p. 4168-4175
  • DOI: 10.1021/nl2020476

Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
journal, July 2013

  • Voiry, Damien; Yamaguchi, Hisato; Li, Junwen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3700

Ultrathin WS 2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction
journal, May 2014

  • Cheng, Liang; Huang, Wenjing; Gong, Qiufang
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201402315

Structure and Function of the Catalyst and the Promoter in Co—Mo Hydrodesulfurization Catalysts
journal, February 1989


Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Hydrogen evolution on nano-particulate transition metal sulfides
journal, January 2009

  • Bonde, Jacob; Moses, Poul G.; Jaramillo, Thomas F.
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B803857K

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
journal, August 2013


Controllable Disorder Engineering in Oxygen-Incorporated MoS 2 Ultrathin Nanosheets for Efficient Hydrogen Evolution
journal, November 2013

  • Xie, Junfeng; Zhang, Jiajia; Li, Shuang
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja408329q

Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
journal, August 2012

  • Benck, Jesse D.; Chen, Zhebo; Kuritzky, Leah Y.
  • ACS Catalysis, Vol. 2, Issue 9, p. 1916-1923
  • DOI: 10.1021/cs300451q

Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction
journal, November 2013

  • Wang, H.; Lu, Z.; Xu, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 49
  • DOI: 10.1073/pnas.1316792110

MoS 2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution
journal, May 2013

  • Liao, Lei; Zhu, Jie; Bian, Xiaojun
  • Advanced Functional Materials, Vol. 23, Issue 42
  • DOI: 10.1002/adfm.201300318

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Electrochemical Tuning of MoS 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution
journal, April 2014

  • Wang, Haotian; Lu, Zhiyi; Kong, Desheng
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn500959v

Highly Active and Stable Hydrogen Evolution Electrocatalysts Based on Molybdenum Compounds on Carbon Nanotube–Graphene Hybrid Support
journal, April 2014

  • Youn, Duck Hyun; Han, Suenghoon; Kim, Jae Young
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn5012144

Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
journal, January 2012

  • Merki, Daniel; Vrubel, Heron; Rovelli, Lorenzo
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20539d

Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase
journal, April 2014

  • Zhu, Ying-Jie; Chen, Feng
  • Chemical Reviews, Vol. 114, Issue 12
  • DOI: 10.1021/cr400366s

Atomic-Layer-Deposition-Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application
journal, August 2013


Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory
journal, November 2014

  • Zheng, Yao; Jiao, Yan; Jaroniec, Mietek
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201407031

Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces
journal, June 1995


Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication
journal, October 2011

  • Zeng, Zhiyuan; Yin, Zongyou; Huang, Xiao
  • Angewandte Chemie International Edition, Vol. 50, Issue 47, p. 11093-11097
  • DOI: 10.1002/anie.201106004

Evolution of interlayer coupling in twisted molybdenum disulfide bilayers
journal, September 2014

  • Liu, Kaihui; Zhang, Liming; Cao, Ting
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5966

Tuning the MoS 2 Edge-Site Activity for Hydrogen Evolution via Support Interactions
journal, February 2014

  • Tsai, Charlie; Abild-Pedersen, Frank; Nørskov, Jens K.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404444k

Anomalous Lattice Vibrations of Single- and Few-Layer MoS 2
journal, March 2010

  • Lee, Changgu; Yan, Hugen; Brus, Louis E.
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn1003937

Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction
journal, February 2014

  • Li, Dong Jun; Maiti, Uday Narayan; Lim, Joonwon
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404108a

    Works referencing / citing this record:

    Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis
    journal, June 2018


    Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting
    journal, January 2018

    • Li, Xiao; Wang, Xinlong; Zhou, Jie
    • Journal of Materials Chemistry A, Vol. 6, Issue 14
    • DOI: 10.1039/c7ta10558d

    Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution
    journal, May 2018


    MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction
    journal, June 2019


    Unravelling the synergy effects of defect-rich 1T-MoS 2 /carbon nanotubes for the hydrogen evolution reaction by experimental and calculational studies
    journal, January 2019

    • Jayabal, Subramaniam; Saranya, Govindarajan; Liu, Yongqiang
    • Sustainable Energy & Fuels, Vol. 3, Issue 8
    • DOI: 10.1039/c9se00244h