DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

Abstract

Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images reveal that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Carnegie Inst. of Washington, Washington, D.C. (United States)
Publication Date:
Research Org.:
Carnegie Inst. of Washington, Washington, DC (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research in Extreme Environments (EFree)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1335449
Alternate Identifier(s):
OSTI ID: 1224932
Grant/Contract Number:  
NA0002006; SC0001057; W31P4Q1310005; NA-002006
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 107; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Methane; diamond; atmospheric pressure

Citation Formats

Gou, Huiyang, Hemley, Russell J., and Hemawan, Kadek W. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition. United States: N. p., 2015. Web. doi:10.1063/1.4934751.
Gou, Huiyang, Hemley, Russell J., & Hemawan, Kadek W. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition. United States. https://doi.org/10.1063/1.4934751
Gou, Huiyang, Hemley, Russell J., and Hemawan, Kadek W. Mon . "Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition". United States. https://doi.org/10.1063/1.4934751. https://www.osti.gov/servlets/purl/1335449.
@article{osti_1335449,
title = {Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition},
author = {Gou, Huiyang and Hemley, Russell J. and Hemawan, Kadek W.},
abstractNote = {Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images reveal that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.},
doi = {10.1063/1.4934751},
journal = {Applied Physics Letters},
number = 18,
volume = 107,
place = {United States},
year = {Mon Nov 02 00:00:00 EST 2015},
month = {Mon Nov 02 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fabrication of spherical carbon via UHF inductively coupled microplasma CVD
journal, November 2003

  • Shimizu, Yoshiki; Sasaki, Takeshi; Ito, Tsuyohito
  • Journal of Physics D: Applied Physics, Vol. 36, Issue 23
  • DOI: 10.1088/0022-3727/36/23/011

Atmospheric-Pressure PECVD Coating and Plasma Chemical Etching for Continuous Processing
journal, April 2007

  • Hopfe, Volkmar; Sheel, David W.
  • IEEE Transactions on Plasma Science, Vol. 35, Issue 2
  • DOI: 10.1109/TPS.2007.893248

Synthesis of Diamond Nanowires Using Atmospheric-Pressure Chemical Vapor Deposition
journal, September 2010

  • Hsu, Chih-Hsun; Cloutier, Sylvain G.; Palefsky, Steven
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl100616x

Microplasmas for nanomaterials synthesis
journal, July 2010


Nanoscience with non-equilibrium plasmas at atmospheric pressure
journal, August 2011


Plasma nanoscience: setting directions, tackling grand challenges
journal, April 2011

  • Ostrikov, Kostya (Ken); Cvelbar, Uros; Murphy, Anthony B.
  • Journal of Physics D: Applied Physics, Vol. 44, Issue 17
  • DOI: 10.1088/0022-3727/44/17/174001

Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas
journal, August 2013


Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour
journal, October 2013

  • Kumar, Ajay; Ann Lin, Pin; Xue, Albert
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3618

The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

Microwave capillary plasmas in helium at atmospheric pressure
journal, June 2014


Microwave-excited atmospheric pressure plasma jet with wide aperture for the synthesis of carbon nanomaterials
journal, November 2014

  • Kim, Jaeho; Sakakita, Hajime; Ohsaki, Hiroyuki
  • Japanese Journal of Applied Physics, Vol. 54, Issue 1S
  • DOI: 10.7567/JJAP.54.01AA02

Very high growth rate chemical vapor deposition of single-crystal diamond
journal, September 2002

  • Yan, C.-s.; Vohra, Y. K.; Mao, H.-k.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20, p. 12523-12525
  • DOI: 10.1073/pnas.152464799

Growing Diamond Crystals by Chemical Vapor Deposition
journal, March 2005


Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Influences of ambient atmosphere on diamond synthesis using an oxygen-acetylene torch
journal, January 1994

  • Aldredge, R. C.; Goodwin, D. G.
  • Journal of Materials Research, Vol. 9, Issue 1
  • DOI: 10.1557/JMR.1994.0080

Uniform deposition of diamond films using a flat flame stabilized in the stagnation‐point flow
journal, June 1991

  • Murayama, Motohide; Kojima, Shinji; Uchida, Kiyoshi
  • Journal of Applied Physics, Vol. 69, Issue 11
  • DOI: 10.1063/1.347484

Diamond synthesis using an oxygen-acetylene torch
journal, December 1988


Diamond synthesis by DC thermal plasma CVD at 1 atm
journal, September 1991

  • Lu, Z. P.; Stachowicz, L.; Kong, P.
  • Plasma Chemistry and Plasma Processing, Vol. 11, Issue 3
  • DOI: 10.1007/BF01458918

High growth rate diamond synthesis in a large area atmospheric pressure inductively coupled plasma
journal, November 1990

  • Cappelli, M. A.; Owano, T. G.; Kruger, C. H.
  • Journal of Materials Research, Vol. 5, Issue 11
  • DOI: 10.1557/JMR.1990.2326

New technology for high rate synthesis of PC-diamond coatings in air with photon plasmatron
journal, March 2002


A laser plasmotron for chamberless deposition of diamond films
journal, April 2005


Development of a new microwave plasma torch and its application to diamond synthesis
journal, February 1989

  • Mitsuda, Yoshitaka; Yoshida, Toyonobu; Akashi, Kazuo
  • Review of Scientific Instruments, Vol. 60, Issue 2
  • DOI: 10.1063/1.1140416

Diamond synthesis through the generation of plasma during spark plasma sintering
journal, August 2012

  • Zhang, Faming; Ahmed, Furqan; Bednarcik, Jozef
  • physica status solidi (a), Vol. 209, Issue 11
  • DOI: 10.1002/pssa.201228317

Small surface wave discharge at atmospheric pressure
journal, August 2009


Amorphous carbon film deposition on the inner surface of tubes using atmospheric pressure pulsed filamentary plasma source
journal, August 2011


Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2
journal, July 2001

  • Jiao, S.; Sumant, A.; Kirk, M. A.
  • Journal of Applied Physics, Vol. 90, Issue 1
  • DOI: 10.1063/1.1377301

Hydrogen-free CVD diamond synthesis
journal, October 2006

  • Hiraga, Shinji; Shimada, Shouhei; Takagi, Yoshiki
  • Superlattices and Microstructures, Vol. 40, Issue 4-6
  • DOI: 10.1016/j.spmi.2006.09.030

Formation of ultrananocrystalline diamond films with nitrogen addition
journal, March 2011


Photoemission spectroscopic study of nitrogen-incorporated nanocrystalline diamond films
journal, February 2007

  • Ma, K. L.; Tang, J. X.; Zou, Y. S.
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2709953

Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties
journal, March 2013


Nanocrystalline diamond
journal, May 2011


Raman scattering characterization of carbon bonding in diamond and diamondlike thin films
journal, May 1988

  • Nemanich, R. J.; Glass, J. T.; Lucovsky, G.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 6, Issue 3
  • DOI: 10.1116/1.575297

Diamond-like amorphous carbon
journal, May 2002


Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond
journal, September 2004

  • Ferrari, Andrea Carlo; Robertson, John
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 362, Issue 1824
  • DOI: 10.1098/rsta.2004.1452

Diamond formation by thermal activation of graphite
journal, November 1999

  • Palnichenko, A. V.; Jonas, A. M.; Charlier, J. -C.
  • Nature, Vol. 402, Issue 6758
  • DOI: 10.1038/46000

Growth of diamond by DC Arcjet Plasma CVD: From nano-sized poly-crystal films to millimeter-sized single crystal grain
journal, July 2010


Oriented CVD diamond films: twin formation, structure and morphology
journal, April 1994


Growth kinetics of (100), (110), and (111) homoepitaxial diamond films
journal, September 1992

  • Chu, C. J.; Hauge, R. H.; Margrave, J. L.
  • Applied Physics Letters, Vol. 61, Issue 12
  • DOI: 10.1063/1.107548

Electron microscopy of the growth features and crystal structures of filament assisted CVD diamond films
journal, December 1989


Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing
journal, November 2006


Incongruent vaporization of titanium carbide in thermal plasma
journal, March 2003


Works referencing / citing this record:

Fast growth of nanodiamond in a microwave oven under atmospheric conditions
journal, August 2019

  • Roy, Soumyendu; Bajpai, Reeti; Biro, Ronit Popovitz
  • Journal of Materials Science, Vol. 55, Issue 2
  • DOI: 10.1007/s10853-019-03936-4

Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD
journal, January 2018

  • Tu, Rong; Xu, Tiantian; Li, Dengfeng
  • RSC Advances, Vol. 8, Issue 29
  • DOI: 10.1039/c8ra01871e

Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen
journal, September 2016