skip to main content

DOE PAGESDOE PAGES

Title: Complex catalytic behaviors of CuTiO x mixed-oxide during CO oxidation

Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiO x monolayer film supported on Cu(111), CuTiO x/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiO x is able to stabilize and isolate a single Cu + site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu + site. Upon the formation of step-edges, the synergy among Cu δ+ sites, TiO x matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O 2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu δ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.
Authors:
 [1] ;  [2]
  1. Chungnam National Univ., Daejeon (Korea); Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Report Number(s):
BNL-108461-2015-JA
Journal ID: ISSN 1932-7447; R&D Project: 16068; KC0403020
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 40; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; CO oxidation; CuTiOx; mechanism; mixed oxide; DFT
OSTI Identifier:
1224192