DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

Abstract

Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in othermore » organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

Authors:
 [1];  [2];  [3];  [1]
  1. Univ. of Alabama at Birmingham, Birmingham, AL (United States)
  2. Cornell Univ., Chicago, IL (United States)
  3. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1224087
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
BMC Structural Biology (Online)
Additional Journal Information:
Journal Name: BMC Structural Biology (Online); Journal Volume: 15; Journal Issue: 1; Journal ID: ISSN 1472-6807
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; protein-DNA structure; non-specific DNA; early DNA recognition complex; uracil-DNA glycosylase; poxvirus

Citation Formats

Schormann, Norbert, Banerjee, Surajit, Ricciardi, Robert, and Chattopadhyay, Debasish. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase. United States: N. p., 2015. Web. doi:10.1186/s12900-015-0037-1.
Schormann, Norbert, Banerjee, Surajit, Ricciardi, Robert, & Chattopadhyay, Debasish. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase. United States. https://doi.org/10.1186/s12900-015-0037-1
Schormann, Norbert, Banerjee, Surajit, Ricciardi, Robert, and Chattopadhyay, Debasish. Tue . "Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase". United States. https://doi.org/10.1186/s12900-015-0037-1. https://www.osti.gov/servlets/purl/1224087.
@article{osti_1224087,
title = {Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase},
author = {Schormann, Norbert and Banerjee, Surajit and Ricciardi, Robert and Chattopadhyay, Debasish},
abstractNote = {Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.},
doi = {10.1186/s12900-015-0037-1},
journal = {BMC Structural Biology (Online)},
number = 1,
volume = 15,
place = {United States},
year = {Tue Jun 02 00:00:00 EDT 2015},
month = {Tue Jun 02 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes
journal, July 2004


Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition
journal, March 2010

  • Zharkov, Dmitry O.; Mechetin, Grigory V.; Nevinsky, Georgy A.
  • Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol. 685, Issue 1-2
  • DOI: 10.1016/j.mrfmmm.2009.10.017

Correction to DNA Translocation by Human Uracil DNA Glycosylase: Role of DNA Phosphate Charge
journal, November 2013

  • Schonhoft, Joseph D.; Kosowicz, John G.; Stivers, James T.
  • Biochemistry, Vol. 52, Issue 47
  • DOI: 10.1021/bi401512a

Linking Crystallographic Model and Data Quality
journal, May 2012


PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Vaccinia Virus D4 Mutants Defective in Processive DNA Synthesis Retain Binding to A20 and DNA
journal, September 2010

  • Druck Shudofsky, A. M.; Silverman, J. E. Y.; Chattopadhyay, D.
  • Journal of Virology, Vol. 84, Issue 23
  • DOI: 10.1128/jvi.01435-10

Structure of the uracil complex of Vaccinia virus uracil DNA glycosylase
journal, November 2013

  • Schormann, N.; Banerjee, S.; Ricciardi, R.
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 69, Issue 12
  • DOI: 10.1107/s1744309113030613

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/s0907444909047337

X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA
journal, May 2005


Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly
journal, January 2007

  • Schormann, Norbert; Grigorian, Alexei; Samal, Alexandra
  • BMC Structural Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1472-6807-7-45

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/s0907444910045749

Uracil-DNA glycosylases-Structural and functional perspectives on an essential family of DNA repair enzymes: Uracil-DNA Glycosylases
journal, October 2014

  • Schormann, N.; Ricciardi, R.; Chattopadhyay, D.
  • Protein Science, Vol. 23, Issue 12
  • DOI: 10.1002/pro.2554

Crystallization and preliminary X-ray diffraction analysis of three recombinant mutants of Vaccinia virus uracil DNA glycosylase
journal, February 2013

  • Sartmatova, Darika; Nash, Taishayla; Schormann, Norbert
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 69, Issue 3
  • DOI: 10.1107/s1744309113002716

Mapping Interaction Sites of the A20R Protein Component of the Vaccinia Virus DNA Replication Complex
journal, November 2002


DNA glycosylases: in DNA repair and beyond
journal, November 2011


Dynamic opening of DNA during the enzymatic search for a damaged base
journal, November 2004

  • Cao, Chunyang; Jiang, Yu Lin; Stivers, James T.
  • Nature Structural & Molecular Biology, Vol. 11, Issue 12
  • DOI: 10.1038/nsmb864

Web 3DNA--a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures
journal, May 2009

  • Zheng, G.; Lu, X. -J.; Olson, W. K.
  • Nucleic Acids Research, Vol. 37, Issue Web Server
  • DOI: 10.1093/nar/gkp358

Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery
journal, November 2012

  • Sèle, Céleste; Gabel, Frank; Gutsche, Irina
  • Journal of Virology, Vol. 87, Issue 3
  • DOI: 10.1128/jvi.01533-12

Enzymatic capture of an extrahelical thymine in the search for uracil in DNA
journal, August 2007

  • Parker, Jared B.; Bianchet, Mario A.; Krosky, Daniel J.
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06131

Vaccinia Virus Uracil DNA Glycosylase Interacts with the A20 Protein to Form a Heterodimeric Processivity Factor for the Viral DNA Polymerase
journal, December 2005

  • Stanitsa, Eleni S.; Arps, Lisa; Traktman, Paula
  • Journal of Biological Chemistry, Vol. 281, Issue 6
  • DOI: 10.1074/jbc.m511239200

Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank
journal, September 2004

  • Yang, Huanwang; Guranovic, Vladimir; Dutta, Shuchismita
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 10
  • DOI: 10.1107/s0907444904019419

Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain
journal, March 2014


Base excision repair in a network of defence and tolerance
journal, July 2001


Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects
journal, May 2000

  • Parikh, S. S.; Walcher, G.; Jones, G. D.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 10
  • DOI: 10.1073/pnas.97.10.5083

Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase
journal, August 2003


Uracil in DNA and its processing by different DNA glycosylases
journal, November 2008

  • Visnes, Torkild; Doseth, Berit; Pettersen, Henrik Sahlin
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 364, Issue 1517
  • DOI: 10.1098/rstb.2008.0186

NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions
journal, December 1997


A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA
journal, November 1996

  • Slupphaug, Geir; Mol, Clifford D.; Kavli, Bodil
  • Nature, Vol. 384, Issue 6604
  • DOI: 10.1038/384087a0

The structural basis of specific base-excision repair by uracil–DNA glycosylase
journal, February 1995

  • Savva, Renos; McAuley-Hecht, Katherine; Brown, Tom
  • Nature, Vol. 373, Issue 6514
  • DOI: 10.1038/373487a0

Structure and function in the uracil-DNA glycosylase superfamily
journal, August 2000


Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
journal, September 2020


Author Correction: Structure of the yeast Swi/Snf complex in a nucleosome free state
journal, November 2020


Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity
journal, August 2022


Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
journal, September 2002

  • Jiang, Yu Lin; Stivers, James T.
  • Biochemistry, Vol. 41, Issue 37
  • DOI: 10.1021/bi026226r

Base excision repair in a network of defence and tolerance
journal, July 2001


DNA glycosylases: in DNA repair and beyond
journal, November 2011


Uracil in DNA and its processing by different DNA glycosylases
journal, November 2008

  • Visnes, Torkild; Doseth, Berit; Pettersen, Henrik Sahlin
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 364, Issue 1517
  • DOI: 10.1098/rstb.2008.0186

Uracil-DNA glycosylases-Structural and functional perspectives on an essential family of DNA repair enzymes: Uracil-DNA Glycosylases
journal, October 2014

  • Schormann, N.; Ricciardi, R.; Chattopadhyay, D.
  • Protein Science, Vol. 23, Issue 12
  • DOI: 10.1002/pro.2554

Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects
journal, May 2000

  • Parikh, S. S.; Walcher, G.; Jones, G. D.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 10
  • DOI: 10.1073/pnas.97.10.5083

Stressing-Out DNA? The Contribution of Serine−Phosphodiester Interactions in Catalysis by Uracil DNA Glycosylase
journal, October 2000

  • Werner, R. Marshall; Jiang, Yu Lin; Gordley, Russell G.
  • Biochemistry, Vol. 39, Issue 41
  • DOI: 10.1021/bi001532v

Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
journal, September 2002

  • Jiang, Yu Lin; Stivers, James T.
  • Biochemistry, Vol. 41, Issue 37
  • DOI: 10.1021/bi026226r

A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA
journal, November 1996

  • Slupphaug, Geir; Mol, Clifford D.; Kavli, Bodil
  • Nature, Vol. 384, Issue 6604
  • DOI: 10.1038/384087a0

The structural basis of specific base-excision repair by uracil–DNA glycosylase
journal, February 1995

  • Savva, Renos; McAuley-Hecht, Katherine; Brown, Tom
  • Nature, Vol. 373, Issue 6514
  • DOI: 10.1038/373487a0

Enzymatic capture of an extrahelical thymine in the search for uracil in DNA
journal, August 2007

  • Parker, Jared B.; Bianchet, Mario A.; Krosky, Daniel J.
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06131

Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly
journal, January 2007

  • Schormann, Norbert; Grigorian, Alexei; Samal, Alexandra
  • BMC Structural Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1472-6807-7-45

Mapping Interaction Sites of the A20R Protein Component of the Vaccinia Virus DNA Replication Complex
journal, November 2002


Evaluation of the Role of the Vaccinia Virus Uracil DNA Glycosylase and A20 Proteins as Intrinsic Components of the DNA Polymerase Holoenzyme
journal, May 2011

  • Boyle, Kathleen A.; Stanitsa, Eleni S.; Greseth, Matthew D.
  • Journal of Biological Chemistry, Vol. 286, Issue 28
  • DOI: 10.1074/jbc.M111.222216

Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain
journal, March 2014


Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity.
journal, December 1994


Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase
journal, August 2003


MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
journal, May 2007

  • Davis, I. W.; Leaver-Fay, A.; Chen, V. B.
  • Nucleic Acids Research, Vol. 35, Issue Web Server
  • DOI: 10.1093/nar/gkm216

Web 3DNA--a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures
journal, May 2009

  • Zheng, G.; Lu, X. -J.; Olson, W. K.
  • Nucleic Acids Research, Vol. 37, Issue Web Server
  • DOI: 10.1093/nar/gkp358

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn
journal, December 1996


X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA
journal, May 2005


Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase
journal, April 2012

  • Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon
  • Nucleic Acids Research, Vol. 40, Issue 13
  • DOI: 10.1093/nar/gks291

Dynamic opening of DNA during the enzymatic search for a damaged base
journal, November 2004

  • Cao, Chunyang; Jiang, Yu Lin; Stivers, James T.
  • Nature Structural & Molecular Biology, Vol. 11, Issue 12
  • DOI: 10.1038/nsmb864

Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes
journal, July 2004


Structure of BamHI Bound to Nonspecific DNA
journal, May 2000


Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition
journal, March 2010

  • Zharkov, Dmitry O.; Mechetin, Grigory V.; Nevinsky, Georgy A.
  • Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol. 685, Issue 1-2
  • DOI: 10.1016/j.mrfmmm.2009.10.017

DNA Translocation by Human Uracil DNA Glycosylase: Role of DNA Phosphate Charge
journal, April 2013

  • Schonhoft, Joseph D.; Kosowicz, John G.; Stivers, James T.
  • Biochemistry, Vol. 52, Issue 15
  • DOI: 10.1021/bi301561d

Integration, scaling, space-group assignment and post-refinement
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 133-144
  • DOI: 10.1107/S0907444909047374

Linking Crystallographic Model and Data Quality
journal, May 2012


Better models by discarding data?
journal, June 2013

  • Diederichs, K.; Karplus, P. A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913001121

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

Global indicators of X-ray data quality
journal, April 2001


NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions
journal, December 1997


UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084