skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

Abstract

We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of California, Riverside, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Riverside, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1223601
Grant/Contract Number:  
SC0012670
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 107; Journal Issue: 18; Conference: Brillouin-Mandelstam Light Scattering Spectroscopy of the Nanoscale Phononic Superlattice Arrays, Nonlinear Optics 2015, Kauai, HI (United States), 26-31 Jul 2015; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; thermal conductivity; Brillouin-Mandelstam light scattering; phonon confinement; nanoporous alumina; acoustic scattering; nanoporous materials; heat conduction

Citation Formats

Kargar, Fariborz, Ramirez, Sylvester, Debnath, Bishwajit, Malekpour, Hoda, Lake, Roger, and Balandin, Alexander A. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. United States: N. p., 2015. Web. doi:10.1063/1.4934883.
Kargar, Fariborz, Ramirez, Sylvester, Debnath, Bishwajit, Malekpour, Hoda, Lake, Roger, & Balandin, Alexander A. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. United States. doi:10.1063/1.4934883.
Kargar, Fariborz, Ramirez, Sylvester, Debnath, Bishwajit, Malekpour, Hoda, Lake, Roger, and Balandin, Alexander A. Wed . "Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays". United States. doi:10.1063/1.4934883. https://www.osti.gov/servlets/purl/1223601.
@article{osti_1223601,
title = {Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays},
author = {Kargar, Fariborz and Ramirez, Sylvester and Debnath, Bishwajit and Malekpour, Hoda and Lake, Roger and Balandin, Alexander A.},
abstractNote = {We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.},
doi = {10.1063/1.4934883},
journal = {Applied Physics Letters},
number = 18,
volume = 107,
place = {United States},
year = {2015},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Phononics in low-dimensional materials
journal, June 2012


Thermal Conductivity in Thin Silicon Nanowires:  Phonon Confinement Effect
journal, May 2007

  • Ponomareva, Inna; Srivastava, Deepak; Menon, Madhu
  • Nano Letters, Vol. 7, Issue 5
  • DOI: 10.1021/nl062823d

Thermal Conductivity of Ge and Ge–Si Core–Shell Nanowires in the Phonon Confinement Regime
journal, December 2011

  • Wingert, Matthew C.; Chen, Zack C. Y.; Dechaumphai, Edward
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203356h

Phonons in Slow Motion: Dispersion Relations in Ultrathin Si Membranes
journal, June 2012

  • Cuffe, John; Chávez, Emigdio; Shchepetov, Andrey
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl301204u

Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015

  • Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8228

Vibrational modes of GaN nanowires in the gigahertz range
journal, November 2012


Significant Reduction of Thermal Conductivity in Si/Ge Core−Shell Nanowires
journal, February 2011

  • Hu, Ming; Giapis, Konstantinos P.; Goicochea, Javier V.
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl103718a

Suppression of phonon heat conduction in cross-section-modulated nanowires
journal, May 2012


Thermal conductivity of twisted bilayer graphene
journal, January 2014

  • Li, Hongyang; Ying, Hao; Chen, Xiangping
  • Nanoscale, Vol. 6, Issue 22
  • DOI: 10.1039/C4NR04455J

Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths
journal, October 2014

  • Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl502059f

Phonon heat conduction in a semiconductor nanowire
journal, March 2001

  • Zou, Jie; Balandin, Alexander
  • Journal of Applied Physics, Vol. 89, Issue 5
  • DOI: 10.1063/1.1345515

Observation of hypersonic phononic crystal effects in porous silicon superlattices
journal, December 2009

  • Parsons, L. C.; Andrews, G. T.
  • Applied Physics Letters, Vol. 95, Issue 24
  • DOI: 10.1063/1.3275742

Anisotropic propagation and confinement of high frequency phonons in nanocomposites
journal, March 2009

  • Sato, A.; Knoll, W.; Pennec, Y.
  • The Journal of Chemical Physics, Vol. 130, Issue 11
  • DOI: 10.1063/1.3096972

Phonon dispersion in hypersonic two-dimensional phononic crystal membranes
journal, February 2015


Brillouin light scattering spectra as local temperature sensors for thermal magnons and acoustic phonons
journal, February 2013

  • Birt, Daniel R.; An, Kyongmo; Weathers, Annie
  • Applied Physics Letters, Vol. 102, Issue 8
  • DOI: 10.1063/1.4793538

Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
journal, February 2015

  • Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo
  • Applied Physics Letters, Vol. 106, Issue 5
  • DOI: 10.1063/1.4907616

Brillouin study of acoustic phonon confinement in GeO2 nanocubes
journal, August 2007

  • Li, Y.; Lim, H. S.; Ng, S. C.
  • Applied Physics Letters, Vol. 91, Issue 9
  • DOI: 10.1063/1.2777174

Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance
journal, July 2014

  • Parsons, L. C.; Andrews, G. T.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890319

Cavity-type hypersonic phononic crystals
journal, November 2012


Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
journal, January 2013


On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide
journal, September 1998

  • Li, Feiyue; Zhang, Lan; Metzger, Robert M.
  • Chemistry of Materials, Vol. 10, Issue 9
  • DOI: 10.1021/cm980163a

Predictions of effective physical properties of complex multiphase materials
journal, December 2008


Effective properties of suspensions, composites and porous materials
journal, January 2007


Simple second-order expression: For the porosity dependence of thermal conductivity
journal, May 2005


Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films
journal, February 2014

  • Goli, Pradyumna; Ning, Hao; Li, Xuesong
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404719n

Porous alumina and zirconia ceramics with tailored thermal conductivity
journal, November 2012


Thermal conductivity of anodized aluminum oxide layer: The effect of electrolyte and temperature
journal, September 2013


Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent
journal, February 2009


Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials
journal, July 1970


Phonons in amorphous silica
journal, September 1977


Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Light scattering from surface acoustic phonons in metals and semiconductors
journal, May 1978


Refractive-index measurement of bulk materials: prism coupling method
journal, January 1983

  • Onodera, Hidetoshi; Awai, Ikuo; Ikenoue, Jun-ichi
  • Applied Optics, Vol. 22, Issue 8
  • DOI: 10.1364/AO.22.001194

Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers
journal, September 2005


Acoustic phonon engineering in coated cylindrical nanowires
journal, September 2005

  • Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.
  • Superlattices and Microstructures, Vol. 38, Issue 3
  • DOI: 10.1016/j.spmi.2005.06.001