skip to main content


Title: Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1]
  1. Tufts Univ., Medford, MA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357; FG02-05ER15730; AC05-00OR22725; SC00112704
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemical sciences; catalysis; material science; physical chemistry
OSTI Identifier: