skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

Abstract

The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.

Authors:
 [1];  [2];  [2];  [3];  [4];  [2];  [3];  [2]
  1. Northeastern Univ., Boston, MA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)
  3. Northeastern Univ., Boston, MA (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1222944
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zhou, Ziyao, Howe, Brandon M., Liu, Ming, Nan, Tianxiang, Chen, Xing, Mahalingam, Krishnamurthy, Sun, Nian X., and Brown, Gail J. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. United States: N. p., 2015. Web. doi:10.1038/srep07740.
Zhou, Ziyao, Howe, Brandon M., Liu, Ming, Nan, Tianxiang, Chen, Xing, Mahalingam, Krishnamurthy, Sun, Nian X., & Brown, Gail J. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. United States. doi:10.1038/srep07740.
Zhou, Ziyao, Howe, Brandon M., Liu, Ming, Nan, Tianxiang, Chen, Xing, Mahalingam, Krishnamurthy, Sun, Nian X., and Brown, Gail J. Tue . "Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures". United States. doi:10.1038/srep07740. https://www.osti.gov/servlets/purl/1222944.
@article{osti_1222944,
title = {Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures},
author = {Zhou, Ziyao and Howe, Brandon M. and Liu, Ming and Nan, Tianxiang and Chen, Xing and Mahalingam, Krishnamurthy and Sun, Nian X. and Brown, Gail J.},
abstractNote = {The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.},
doi = {10.1038/srep07740},
journal = {Scientific Reports},
number = ,
volume = 5,
place = {United States},
year = {2015},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share: