skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

Abstract

Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novelmore » NiAu@Pt nanocatalyst for the ORR.« less

Authors:
 [1];  [2]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Shanghai Univ. of Engineering Science, Shanghai (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1222624
Report Number(s):
BNL-108460-2015-JA
Journal ID: ISSN 2155-5435; R&D Project: CO027; KC0302010
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Name: ACS Catalysis; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; core-shell nanoparticles; ORR; durability; AuNi alloy; Pt shell; density functional theory (DFT)

Citation Formats

An, Wei, and Liu, Ping. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction. United States: N. p., 2015. Web. https://doi.org/10.1021/acscatal.5b01656.
An, Wei, & Liu, Ping. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction. United States. https://doi.org/10.1021/acscatal.5b01656
An, Wei, and Liu, Ping. Fri . "Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction". United States. https://doi.org/10.1021/acscatal.5b01656. https://www.osti.gov/servlets/purl/1222624.
@article{osti_1222624,
title = {Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction},
author = {An, Wei and Liu, Ping},
abstractNote = {Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.},
doi = {10.1021/acscatal.5b01656},
journal = {ACS Catalysis},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
journal, January 2012

  • Stephens, Ifan E. L.; Bondarenko, Alexander S.; Grønbjerg, Ulrik
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03590a

Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction
journal, January 2012

  • Sasaki, Kotaro; Naohara, Hideo; Choi, YongMan
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2124

Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts
journal, September 2013

  • Hsieh, Yu-Chi; Zhang, Yu; Su, Dong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3466

Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
journal, March 2008

  • Alayoglu, Selim; Nilekar, Anand U.; Mavrikakis, Manos
  • Nature Materials, Vol. 7, Issue 4, p. 333-338
  • DOI: 10.1038/nmat2156

Electrochemistry of Nanoparticles
journal, February 2014

  • Kleijn, Steven E. F.; Lai, Stanley C. S.; Koper, Marc T. M.
  • Angewandte Chemie International Edition, Vol. 53, Issue 14
  • DOI: 10.1002/anie.201306828

Nanoparticles for Heterogeneous Catalysis: New Mechanistic Insights
journal, December 2012

  • Schauermann, Swetlana; Nilius, Niklas; Shaikhutdinov, Shamil
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300225s

Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis
journal, January 2014

  • Viñes, Francesc; Gomes, José R. B.; Illas, Francesc
  • Chem. Soc. Rev., Vol. 43, Issue 14
  • DOI: 10.1039/c3cs60421g

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques
journal, November 2009

  • Somorjai, Gabor A.; Frei, Heinz; Park, Jeong Y.
  • Journal of the American Chemical Society, Vol. 131, Issue 46, p. 16589-16605
  • DOI: 10.1021/ja9061954

Electrocatalyst approaches and challenges for automotive fuel cells
journal, June 2012


Pt-based nanoarchitecture and catalyst design for fuel cell applications
journal, August 2014


Nanoparticle structures served up on a tray
journal, March 2013


Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction
journal, May 2009


Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts
journal, October 2012

  • Wang, Deli; Xin, Huolin L.; Hovden, Robert
  • Nature Materials, Vol. 12, Issue 1, p. 81-87
  • DOI: 10.1038/nmat3458

Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells
journal, January 2012

  • Lee, Young-Woo; Ko, A-Ra; Kim, Do-Young
  • RSC Adv., Vol. 2, Issue 3
  • DOI: 10.1039/C1RA00308A

Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction
journal, June 2013

  • Guo, Shaojun; Zhang, Sen; Sun, Shouheng
  • Angewandte Chemie International Edition, Vol. 52, Issue 33
  • DOI: 10.1002/anie.201207186

Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure
journal, April 2006

  • Stamenkovic, Vojislav; Mun, Bongjin Simon; Mayrhofer, Karl J. J.
  • Angewandte Chemie International Edition, Vol. 45, Issue 18
  • DOI: 10.1002/anie.200504386

Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
journal, February 2007

  • Stamenkovic, Vojislav R.; Mun, Bongjin Simon; Arenz, Matthias
  • Nature Materials, Vol. 6, Issue 3, p. 241-247
  • DOI: 10.1038/nmat1840

Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to Ni/Pt to Catalyze Oxygen Reduction
journal, November 2014

  • Zhang, Sen; Hao, Yizhou; Su, Dong
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja5099066

Ni–Pt Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts: Effect of Pt Shell Coverage
journal, November 2011

  • Chen, Yumei; Liang, Zhixiu; Yang, Fan
  • The Journal of Physical Chemistry C, Vol. 115, Issue 49
  • DOI: 10.1021/jp207828n

Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:  Pt-Skin versus Pt-Skeleton Surfaces
journal, July 2006

  • Stamenkovic, Vojislav R.; Mun, Bongjin Simon; Mayrhofer, Karl J. J.
  • Journal of the American Chemical Society, Vol. 128, Issue 27
  • DOI: 10.1021/ja0600476

Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction
journal, September 2013

  • Zhang, Liang; Iyyamperumal, Ravikumar; Yancey, David F.
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn403788a

Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes
journal, October 2010

  • Sasaki, Kotaro; Naohara, Hideo; Cai, Yun
  • Angewandte Chemie International Edition, Vol. 49, Issue 46, p. 8602-8607
  • DOI: 10.1002/anie.201004287

The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects
journal, January 2014

  • Shao, Minhua; Odell, Jonathan H.; Peles, Amra
  • Chemical Communications, Vol. 50, Issue 17
  • DOI: 10.1039/c3cc47341d

Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
journal, April 2010

  • Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli
  • Nature Chemistry, Vol. 2, Issue 6
  • DOI: 10.1038/nchem.623

Size and Shape Effects of Pd@Pt Core–Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility
journal, July 2013

  • An, Wei; Liu, Ping
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp4057785

Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces
journal, September 2011

  • Wang, Chao; Chi, Miaofang; Li, Dongguo
  • Journal of the American Chemical Society, Vol. 133, Issue 36, p. 14396-14403
  • DOI: 10.1021/ja2047655

Low-Coordination Sites in Oxygen-Reduction Electrocatalysis: Their Roles and Methods for Removal
journal, July 2011


Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions
journal, January 2013

  • Jung, Namgee; Chung, Young-Hoon; Chung, Dong Young
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 40
  • DOI: 10.1039/c3cp52807c

Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations
journal, May 2007


Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters
journal, January 2007


Multimetallic Au/FePt 3 Nanoparticles as Highly Durable Electrocatalyst
journal, March 2011

  • Wang, Chao; van der Vliet, Dennis; More, Karren L.
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl102369k

Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability
journal, January 2007

  • Stamenkovic, V. R.; Fowler, B.; Mun, B. S.
  • Science, Vol. 315, Issue 5811, p. 493-497
  • DOI: 10.1126/science.1135941

Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis
journal, June 2013

  • Cui, Chunhua; Gan, Lin; Heggen, Marc
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3668

Octahedral PtNi Nanoparticle Catalysts Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition
journal, October 2012

  • Cui, Chunhua; Gan, Lin; Li, Hui-Hui
  • Nano Letters, Vol. 12, Issue 11, p. 5885-5889
  • DOI: 10.1021/nl3032795

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Climbing the Activity Volcano: Core-Shell Ru@Pt Electrocatalysts for Oxygen Reduction
journal, November 2013

  • Jackson, Ariel; Viswanathan, Venkatasubramanian; Forman, Arnold J.
  • ChemElectroChem, Vol. 1, Issue 1
  • DOI: 10.1002/celc.201300117

Tuning the Catalytic Activity of Ru@Pt Core–Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness
journal, January 2013

  • Yang, Lijun; Vukmirovic, Miomir B.; Su, Dong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 4
  • DOI: 10.1021/jp309990e

Steady state oxygenreduction and cyclic voltammetry
journal, January 2009

  • Rossmeisl, Jan; Karlberg, Gustav S.; Jaramillo, Thomas
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B802129E

Unifying Kinetic and Thermodynamic Analysis of 2 e and 4 e Reduction of Oxygen on Metal Surfaces
journal, March 2014

  • Hansen, Heine A.; Viswanathan, Venkatasubramanian; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp4100608

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Projector augmented-wave method
journal, December 1994


Oxygen Reduction on Well-Defined Core−Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects
journal, December 2009

  • Wang, Jia X.; Inada, Hiromi; Wu, Lijun
  • Journal of the American Chemical Society, Vol. 131, Issue 47
  • DOI: 10.1021/ja9067645

Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt 3 Ni Nanopolyhedra
journal, February 2010

  • Zhang, Jun; Yang, Hongzhou; Fang, Jiye
  • Nano Letters, Vol. 10, Issue 2
  • DOI: 10.1021/nl903717z

Unifying the 2e and 4e Reduction of Oxygen on Metal Surfaces
journal, September 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301476w

Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces
journal, July 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs300227s

Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters
journal, December 2012

  • Li, Lin; Larsen, Ask H.; Romero, Nichols A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 1
  • DOI: 10.1021/jz3018286

Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces
journal, October 2004


Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals
journal, June 2004

  • Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1737365

Effect of Strain on the Reactivity of Metal Surfaces
journal, September 1998


Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles
journal, March 2008

  • Ferrando, Riccardo; Jellinek, Julius; Johnston, Roy L.
  • Chemical Reviews, Vol. 108, Issue 3, p. 845-910
  • DOI: 10.1021/cr040090g

In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts
journal, December 2008


Surface segregation energies in transition-metal alloys
journal, June 1999


On the composition of bimetallic near-surface alloys in the presence of oxygen and carbon monoxide
journal, July 2014


Rh-catalyzed syngas conversion to ethanol: Studies on the promoting effect of FeOx
journal, August 2011


High Performance Pt Monolayer Catalysts Produced via Core-Catalyzed Coating in Ethanol
journal, January 2014

  • Zhang, Yu; Hsieh, Yu-Chi; Volkov, Vyacheslav
  • ACS Catalysis, Vol. 4, Issue 3
  • DOI: 10.1021/cs401091u

Site-Selective Cu Deposition on Pt Dendrimer-Encapsulated Nanoparticles: Correlation of Theory and Experiment
journal, February 2012

  • Carino, Emily V.; Kim, Hyun You; Henkelman, Graeme
  • Journal of the American Chemical Society, Vol. 134, Issue 9
  • DOI: 10.1021/ja209115e

Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation
journal, May 2013

  • Suntivich, Jin; Xu, Zhichuan; Carlton, Christopher E.
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja402072r

Initial corrosion observed on the atomic scale
journal, February 2006


Evolution of nanoporosity in dealloying
journal, March 2001

  • Erlebacher, Jonah; Aziz, Michael J.; Karma, Alain
  • Nature, Vol. 410, Issue 6827, p. 450-453
  • DOI: 10.1038/35068529

The Dealloying Critical Potential
journal, January 2002

  • Sieradzki, K.; Dimitrov, N.; Movrin, D.
  • Journal of The Electrochemical Society, Vol. 149, Issue 8
  • DOI: 10.1149/1.1492288

Some reflections on the understanding of the oxygen reduction reaction at Pt(111)
journal, January 2013

  • Gómez-Marín, Ana M.; Rizo, Ruben; Feliu, Juan M.
  • Beilstein Journal of Nanotechnology, Vol. 4
  • DOI: 10.3762/bjnano.4.108

Tetrahedral Palladium Nanocrystals: A New Support for Platinum Monolayer Electrocatalysts with High Activity and Stability in the Oxygen Reduction Reaction
journal, September 2012

  • Gong, Kuanping; Choi, YongMan; Vukmirovic, Miomir B.
  • Zeitschrift für Physikalische Chemie, Vol. 226, Issue 9-10
  • DOI: 10.1524/zpch.2012.0239

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009

  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


First principles based mean field model for oxygen reduction reaction
journal, January 2011

  • Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 47
  • DOI: 10.1039/c1cp21349k

Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction
journal, July 2010


Computational Design of Core/Shell Nanoparticles for Oxygen Reduction Reactions
journal, December 2013

  • Zhang, Xu; Lu, Gang
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz4024699

Theoretical surface science and catalysis—calculations and concepts
book, January 2000


Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications
journal, November 2012

  • Hofmann, Timo; Yu, Ted H.; Folse, Michael
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp303276z

An abinitio study of electrochemical vs. electromechanical properties: the case of CO adsorbed on a Pt(111) surface
journal, January 2011

  • Mamatkulov, M.; Filhol, J. -S.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 17
  • DOI: 10.1039/c0cp01444c

Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction
journal, July 2015

  • Wang, Xue; Choi, Sang-Il; Roling, Luke T.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8594

Oxygen Hydration Mechanism for the Oxygen Reduction Reaction at Pt and Pd Fuel Cell Catalysts
journal, February 2011

  • Sha, Yao; Yu, Ted H.; Merinov, Boris V.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 6
  • DOI: 10.1021/jz101753e

Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory
journal, January 2012

  • Yancey, David F.; Zhang, Liang; Crooks, Richard M.
  • Chemical Science, Vol. 3, Issue 4
  • DOI: 10.1039/c2sc00971d

    Works referencing / citing this record:

    Optimized Pt-Based Catalysts for Oxygen Reduction Reaction in Alkaline Solution: A First Principle Study
    journal, January 2018

    • Liu, Shizhong; Liu, Ping
    • Journal of The Electrochemical Society, Vol. 165, Issue 15
    • DOI: 10.1149/2.0171815jes

    Cobalt Oxide and Cobalt-Graphitic Carbon Core-Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity
    journal, April 2016


    Defining the optimal morphology of Rhn nanoparticles for efficient hydrazine adsorption: a DFT-D3 study
    journal, April 2019