DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

Abstract

We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interactionmore » occurs primarily through lipopolysaccharides.« less

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [6];  [6];  [7];  [6];  [4];  [2];  [8]
  1. Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering; Federal Inst. of Technology (ETH), Zurich (Switzerland)
  2. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry
  3. Univ. of Wisconsin, Madison, WI (United States). Environmental Chemistry and Technology Program
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  5. Univ. of Illinois at Urbana−Champaign, Urbana, IL (United States). Dept. of Chemistry
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  7. Univ. of Illinois at Urbana−Champaign, Urbana, IL (United States). Dept. of Chemistry
  8. Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering; Univ. of Wisconsin, Madison, WI (United States). Environmental Chemistry and Technology Program
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1221471
Report Number(s):
PNNL-SA-112154
Journal ID: ISSN 0013-936X; 47975; KP1704020
Grant/Contract Number:  
AC05-76RL01830; CHE- 1240151; T32 GM008347; DMR-0832760; CBET-0826204
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 49; Journal Issue: 17; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; Lipopolysaccharide; nanoparticle; bacterial outer membranes; antimicrobial; Environmental Molecular Sciences Laboratory

Citation Formats

Jacobson, Kurt H., Gunsolus, Ian L., Kuech, Thomas R., Troiano, Julianne M., Melby, Eric S., Lohse, Samuel E., Hu, Dehong, Chrisler, William B., Murphy, Catherine J., Orr, Galya, Geiger, Franz M., Haynes, Christy L., and Pedersen, Joel A. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. United States: N. p., 2015. Web. doi:10.1021/acs.est.5b01841.
Jacobson, Kurt H., Gunsolus, Ian L., Kuech, Thomas R., Troiano, Julianne M., Melby, Eric S., Lohse, Samuel E., Hu, Dehong, Chrisler, William B., Murphy, Catherine J., Orr, Galya, Geiger, Franz M., Haynes, Christy L., & Pedersen, Joel A. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. United States. https://doi.org/10.1021/acs.est.5b01841
Jacobson, Kurt H., Gunsolus, Ian L., Kuech, Thomas R., Troiano, Julianne M., Melby, Eric S., Lohse, Samuel E., Hu, Dehong, Chrisler, William B., Murphy, Catherine J., Orr, Galya, Geiger, Franz M., Haynes, Christy L., and Pedersen, Joel A. Fri . "Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes". United States. https://doi.org/10.1021/acs.est.5b01841. https://www.osti.gov/servlets/purl/1221471.
@article{osti_1221471,
title = {Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes},
author = {Jacobson, Kurt H. and Gunsolus, Ian L. and Kuech, Thomas R. and Troiano, Julianne M. and Melby, Eric S. and Lohse, Samuel E. and Hu, Dehong and Chrisler, William B. and Murphy, Catherine J. and Orr, Galya and Geiger, Franz M. and Haynes, Christy L. and Pedersen, Joel A.},
abstractNote = {We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.},
doi = {10.1021/acs.est.5b01841},
journal = {Environmental Science and Technology},
number = 17,
volume = 49,
place = {United States},
year = {Fri Jul 24 00:00:00 EDT 2015},
month = {Fri Jul 24 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 88 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Molecular Rulers:  New Families of Molecules for Measuring Interfacial Widths
journal, April 2002

  • Steel, William H.; Damkaci, Fehmi; Nolan, Ryan
  • Journal of the American Chemical Society, Vol. 124, Issue 17
  • DOI: 10.1021/ja012457u

Electrostatic Interactions Affect Nanoparticle-Mediated Toxicity to Gram-Negative Bacterium Pseudomonas aeruginosa PAO1
journal, March 2010

  • Feris, Kevin; Otto, Caitlin; Tinker, Juliette
  • Langmuir, Vol. 26, Issue 6
  • DOI: 10.1021/la903491z

Hydration, ionic valence and cross-linking propensities of cations determine the stability of lipopolysaccharide (LPS) membranes
journal, January 2014

  • Nascimento, Agrinaldo; Pontes, Frederico J. S.; Lins, Roberto D.
  • Chem. Commun., Vol. 50, Issue 2
  • DOI: 10.1039/C3CC46918B

A Molecular Mechanism for Lipopolysaccharide Protection of Gram-negative Bacteria from Antimicrobial Peptides
journal, January 2005


The Bacterial Cell Envelope
journal, April 2010


Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles
journal, February 2011

  • Puzyn, Tomasz; Rasulev, Bakhtiyor; Gajewicz, Agnieszka
  • Nature Nanotechnology, Vol. 6, Issue 3
  • DOI: 10.1038/nnano.2011.10

High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane:  Structural Basis for Permeability
journal, March 2000

  • Amro, Nabil A.; Kotra, Lakshmi P.; Wadu-Mesthrige, Kapila
  • Langmuir, Vol. 16, Issue 6
  • DOI: 10.1021/la991013x

Nonlinear Optical Studies of the Agricultural Antibiotic Morantel Interacting with Silica/Water Interfaces
journal, November 2005

  • Konek, Christopher T.; Illg, Kimberly D.; Al-Abadleh, Hind A.
  • Journal of the American Chemical Society, Vol. 127, Issue 45
  • DOI: 10.1021/ja054837b

Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study
journal, August 2012


Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine
journal, March 2013

  • Eckhardt, Sonja; Brunetto, Priscilla S.; Gagnon, Jacinthe
  • Chemical Reviews, Vol. 113, Issue 7
  • DOI: 10.1021/cr300288v

Supported Lipopolysaccharide Bilayers
journal, August 2012

  • Kaufmann, Stefan; Ilg, Karin; Mashaghi, Alireza
  • Langmuir, Vol. 28, Issue 33
  • DOI: 10.1021/la3020223

Exposure Modeling of Engineered Nanoparticles in the Environment
journal, June 2008

  • Mueller, Nicole C.; Nowack, Bernd
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es7029637

Lipopolysaccharide Endotoxins
journal, June 2002


Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver
journal, December 2013

  • Ivask, Angela; ElBadawy, Amro; Kaweeteerawat, Chitrada
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn4044047

A Glycam-Based Force Field for Simulations of Lipopolysaccharide Membranes: Parametrization and Validation
journal, September 2012

  • Kirschner, Karl N.; Lins, Roberto D.; Maass, Astrid
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 11
  • DOI: 10.1021/ct300534j

Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria
journal, July 2004


Surface layers of bacteria.
journal, January 1991


Release of lipopolysaccharide by EDTA treatment of E., coli
journal, November 1965


Environmental Biogeochemistry Studied by Second-Harmonic Generation:  A Look at the Agricultural Antibiotic Oxytetracycline
journal, June 2007

  • Hayes, Patrick L.; Gibbs-Davis, Julianne M.; Musorrafiti, Michael J.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 25
  • DOI: 10.1021/jp0672149

Lipopolysaccharide: Biosynthetic pathway and structure modification
journal, April 2010


The Origin of 8-Amino-3,8-dideoxy-d-manno-octulosonic Acid (Kdo8N) in the Lipopolysaccharide of Shewanella oneidensis
journal, March 2013

  • Gattis, Samuel G.; Chung, Hak Suk; Trent, M. Stephen
  • Journal of Biological Chemistry, Vol. 288, Issue 13
  • DOI: 10.1074/jbc.M113.453324

Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli
journal, May 2013

  • Le Brun, Anton P.; Clifton, Luke A.; Halbert, Candice E.
  • Biomacromolecules, Vol. 14, Issue 6
  • DOI: 10.1021/bm400356m

Perturbation of an arctic soil microbial community by metal nanoparticles
journal, June 2011


Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?
journal, December 2006


A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria
journal, April 1978

  • Karkhanis, Yashwant D.; Zeltner, Johanna Y.; Jackson, Jesse J.
  • Analytical Biochemistry, Vol. 85, Issue 2
  • DOI: 10.1016/0003-2697(78)90260-9

Terminal Electron Acceptors Influence the Quantity and Chemical Composition of Capsular Exopolymers Produced by Anaerobically Growing Shewanella spp.
journal, January 2007

  • Neal, Andrew L.; Dublin, Steven N.; Taylor, Jeanette
  • Biomacromolecules, Vol. 8, Issue 1
  • DOI: 10.1021/bm060826e

Genome-Wide Bacterial Toxicity Screening Uncovers the Mechanisms of Toxicity of a Cationic Polystyrene Nanomaterial
journal, February 2012

  • Ivask, Angela; Suarez, Elizabeth; Patel, Trina
  • Environmental Science & Technology, Vol. 46, Issue 4
  • DOI: 10.1021/es203087m

Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane
journal, March 2010

  • Chng, S. -S.; Ruiz, N.; Chimalakonda, G.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 12
  • DOI: 10.1073/pnas.0912872107

Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli: AFM STUDY OF E. coli LPS
journal, April 2009

  • Strauss, Joshua; Burnham, Nancy A.; Camesano, Terri A.
  • Journal of Molecular Recognition, Vol. 22, Issue 5
  • DOI: 10.1002/jmr.955

Characterization of the Lipopolysaccharides and Capsules of Shewanella spp
journal, September 2002


Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines
journal, January 2013

  • Vetten, Melissa A.; Tlotleng, Nonhlanhla; Tanner Rascher, Delia
  • Particle and Fibre Toxicology, Vol. 10, Issue 1
  • DOI: 10.1186/1743-8977-10-50

Potential Mechanisms and Environmental Controls of TiO 2 Nanoparticle Effects on Soil Bacterial Communities
journal, November 2013

  • Ge, Yuan; Priester, John H.; Van De Werfhorst, Laurie C.
  • Environmental Science & Technology, Vol. 47, Issue 24
  • DOI: 10.1021/es403385c

Attachment of Pathogenic Prion Protein to Model Oxide Surfaces
journal, May 2013

  • Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.
  • Environmental Science & Technology, Vol. 47, Issue 13
  • DOI: 10.1021/es3045899

Cytotoxicity of CeO 2 Nanoparticles for Escherichia coli. Physico-Chemical Insight of the Cytotoxicity Mechanism
journal, October 2006

  • Thill, Antoine; Zeyons, Ophélie; Spalla, Olivier
  • Environmental Science & Technology, Vol. 40, Issue 19
  • DOI: 10.1021/es060999b

Measuring dipolar width across liquid–liquid interfaces with ‘molecular rulers’
journal, July 2003


The surface properties of Shewanella putrefaciens 200 and S. oneidensis MR-1: the effect of pH and terminal electron acceptors
journal, April 2013


Occurrence, behavior and effects of nanoparticles in the environment
journal, November 2007


Dynamics of the Lipopolysaccharide Assembly on the Surface of Escherichia c oli
journal, September 1999

  • Kotra, Lakshmi P.; Golemi, Dasantila; Amro, Nabil A.
  • Journal of the American Chemical Society, Vol. 121, Issue 38
  • DOI: 10.1021/ja991374z

Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies
journal, September 1998


Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach
journal, May 1999


Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall-Targeted Delivery of Antibiotics
journal, April 2012

  • Radovic-Moreno, Aleksandar F.; Lu, Timothy K.; Puscasu, Vlad A.
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn3008383

Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers
journal, December 2014

  • Troiano, Julianne M.; Olenick, Laura L.; Kuech, Thomas R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp512107z

An Optical Voltmeter for Studying Cetyltrimethylammonium Interacting with Fused Silica/Aqueous Interfaces at High Ionic Strength
journal, March 2009

  • Hayes, Patrick L.; Chen, Ehow H.; Achtyl, Jennifer L.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 16
  • DOI: 10.1021/jp810891v

Toxicity of nanomaterials
journal, January 2012

  • Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie
  • Chem. Soc. Rev., Vol. 41, Issue 6
  • DOI: 10.1039/C1CS15188F

Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces
journal, December 2011

  • Reviakine, Ilya; Johannsmann, Diethelm; Richter, Ralf P.
  • Analytical Chemistry, Vol. 83, Issue 23
  • DOI: 10.1021/ac201778h

Interactions of Ca, Zn, and Cd Ions at Buried Solid/Water Interfaces Studied by Second Harmonic Generation
journal, October 2008

  • Malin, Jessica N.; Hayes, Patrick L.; Geiger, Franz M.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 6
  • DOI: 10.1021/jp805068f

Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung
journal, April 1959


Selective detection of 3-deoxymannooctulosonic acid in intact lipopolysaccharides by spin-echo 13C NMR.
journal, October 1985


Surface layers of bacteria
journal, December 1991


Works referencing / citing this record:

Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution
journal, January 2020

  • Mensch, Arielle C.; Melby, Eric S.; Laudadio, Elizabeth D.
  • Environmental Science: Nano, Vol. 7, Issue 1
  • DOI: 10.1039/c9en00996e

Oral Challenge with Wild-Type Salmonella Typhi Induces Distinct Changes in B Cell Subsets in Individuals Who Develop Typhoid Disease
journal, June 2016

  • Toapanta, Franklin R.; Bernal, Paula J.; Fresnay, Stephanie
  • PLOS Neglected Tropical Diseases, Vol. 10, Issue 6
  • DOI: 10.1371/journal.pntd.0004766

Emerging investigator series: interactions of engineered nanomaterials with the cell plasma membrane; what have we learned from membrane models?
journal, January 2019

  • Farnoud, Amir M.; Nazemidashtarjandi, Saeed
  • Environmental Science: Nano, Vol. 6, Issue 1
  • DOI: 10.1039/c8en00514a

Nanomaterials for Biosensing Lipopolysaccharide
journal, December 2019

  • Sondhi, Palak; Maruf, Md Helal Uddin; Stine, Keith J.
  • Biosensors, Vol. 10, Issue 1
  • DOI: 10.3390/bios10010002

Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade
journal, January 2018

  • Qiu, Tian A.; Clement, Peter L.; Haynes, Christy L.
  • Chemical Communications, Vol. 54, Issue 91
  • DOI: 10.1039/c8cc06473c

Nano-engineering the Antimicrobial Spectrum of Lantibiotics: Activity of Nisin against Gram Negative Bacteria
journal, June 2017


Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring
journal, December 2016


Real-Time Detection of Nanoparticles Interaction with Lipid Membranes Using an Integrated Acoustical and Electrical Multimode Biosensor
journal, November 2018

  • Lu, Yao; Zhang, Hao; Wang, Zhan
  • Particle & Particle Systems Characterization, Vol. 36, Issue 2
  • DOI: 10.1002/ppsc.201800370

Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
journal, January 2018


Macrophomina phaseolina: microbased biorefinery for gold nanoparticle production
journal, January 2019

  • Sreedharan, Smitha Mony; Gupta, Sonali; Saxena, Anil Kumar
  • Annals of Microbiology, Vol. 69, Issue 4
  • DOI: 10.1007/s13213-018-1434-z

Bio-nano interface and environment: A critical review: Bio-Nano interface and environment: A critical review
journal, October 2017

  • Pulido-Reyes, Gerardo; Leganes, Francisco; Fernández-Piñas, Francisca
  • Environmental Toxicology and Chemistry, Vol. 36, Issue 12
  • DOI: 10.1002/etc.3924

Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring
journal, December 2016


Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
journal, January 2018


Gram-negative Escherichia coli promotes deposition of polymer-capped silver nanoparticles in saturated porous media
journal, January 2018

  • Chen, Fangmin; Yuan, Xuemei; Song, Zefeng
  • Environmental Science: Nano, Vol. 5, Issue 6
  • DOI: 10.1039/c8en00067k

Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA)
journal, January 2018

  • Kadiyala, Usha; Turali-Emre, Emine Sumeyra; Bahng, Joong Hwan
  • Nanoscale, Vol. 10, Issue 10
  • DOI: 10.1039/c7nr08499d

Antibacterial and potentiation properties of charge-optimized polyrotaxanes for combating opportunistic bacteria
journal, January 2018

  • Qiao, Jing; Liu, Zhi; Purro, Max
  • Journal of Materials Chemistry B, Vol. 6, Issue 33
  • DOI: 10.1039/c8tb01610k

Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles
journal, September 2016

  • Składanowski, M.; Golinska, P.; Rudnicka, K.
  • Medical Microbiology and Immunology, Vol. 205, Issue 6
  • DOI: 10.1007/s00430-016-0477-7

Electrophoresis as a simple method to detect deleterious actions of engineered nanoparticles on living cells
journal, January 2020

  • Vouriot, Elise; Bihannic, Isabelle; Beaussart, Audrey
  • Environmental Chemistry, Vol. 17, Issue 1
  • DOI: 10.1071/en19190

Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori
journal, January 2018

  • Westmeier, Dana; Posselt, Gernot; Hahlbrock, Angelina
  • Nanoscale, Vol. 10, Issue 3
  • DOI: 10.1039/c7nr06573f