skip to main content


Title: High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric systemmore » reported to-date.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1876-6102; PII: S187661021401830X
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energy Procedia
Additional Journal Information:
Journal Volume: 63; Journal Issue: C; Journal ID: ISSN 1876-6102
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 20 FOSSIL-FUELED POWER PLANTS; 08 HYDROGEN; 36 MATERIALS SCIENCE; Polybenzimidazole; pre-combustion; carbon capture; H₂/CO₂ separations; hollow fiber membrane
OSTI Identifier: