DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

Abstract

Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits.

Authors:
 [1];  [2];  [3];  [2];  [1];  [4]
  1. State Univ. of New York, Piscataway, NJ (United States). Dept. of Physics and Astronomy.
  2. Argonne National Lab., Argonne, IL (United States). Center for Nanoscale Materials.
  3. Univ. of Colorado, Colorado Springs, CO (United States). Dept. of Physics.
  4. National Institute of Standards, Gaithersburg, MD (United States). Center for Nanoscale Science and Technology.
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1215674
Grant/Contract Number:  
AC02-06CH11357; FA9550-09-1-0698; 70NANB14H030; 70NANB14H259; DMR-1104884
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 23; Journal Issue: 17; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; electro-optical devices; integrated optics devices; optical microelectromechanical devices; plasmonics; nanophotonics and photonic crystals

Citation Formats

Dennis, Brian S., Czaplewski, David A., Haftel, Michael I., Lopez, Daniel, Blumberg, Girsh, and Aksyuk, Vladimir. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens. United States: N. p., 2015. Web. doi:10.1364/OE.23.021899.
Dennis, Brian S., Czaplewski, David A., Haftel, Michael I., Lopez, Daniel, Blumberg, Girsh, & Aksyuk, Vladimir. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens. United States. https://doi.org/10.1364/OE.23.021899
Dennis, Brian S., Czaplewski, David A., Haftel, Michael I., Lopez, Daniel, Blumberg, Girsh, and Aksyuk, Vladimir. Wed . "Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens". United States. https://doi.org/10.1364/OE.23.021899. https://www.osti.gov/servlets/purl/1215674.
@article{osti_1215674,
title = {Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens},
author = {Dennis, Brian S. and Czaplewski, David A. and Haftel, Michael I. and Lopez, Daniel and Blumberg, Girsh and Aksyuk, Vladimir},
abstractNote = {Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits.},
doi = {10.1364/OE.23.021899},
journal = {Optics Express},
number = 17,
volume = 23,
place = {United States},
year = {Wed Aug 12 00:00:00 EDT 2015},
month = {Wed Aug 12 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Two-dimensional optics with surface plasmon polaritons
journal, September 2002

  • Ditlbacher, H.; Krenn, J. R.; Schider, G.
  • Applied Physics Letters, Vol. 81, Issue 10
  • DOI: 10.1063/1.1506018

Surface plasmon subwavelength optics
journal, August 2003

  • Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W.
  • Nature, Vol. 424, Issue 6950, p. 824-830
  • DOI: 10.1038/nature01937

Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
journal, July 2005

  • Maier, Stefan A.; Atwater, Harry A.
  • Journal of Applied Physics, Vol. 98, Issue 1
  • DOI: 10.1063/1.1951057

Nano-optics of surface plasmon polaritons
journal, March 2005


Dielectric optical elements for surface plasmons
journal, January 2005

  • Hohenau, Andreas; Krenn, Joachim R.; Stepanov, Andrey L.
  • Optics Letters, Vol. 30, Issue 8
  • DOI: 10.1364/OL.30.000893

Focusing Surface Plasmons with a Plasmonic Lens
journal, September 2005

  • Liu, Zhaowei; Steele, Jennifer M.; Srituravanich, Werayut
  • Nano Letters, Vol. 5, Issue 9, p. 1726-1729
  • DOI: 10.1021/nl051013j

Subwavelength Focusing and Guiding of Surface Plasmons
journal, July 2005

  • Yin, Leilei; Vlasko-Vlasov, Vitali K.; Pearson, John
  • Nano Letters, Vol. 5, Issue 7
  • DOI: 10.1021/nl050723m

Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles
journal, January 2007

  • Evlyukhin, A. B.; Bozhevolnyi, S. I.; Stepanov, A. L.
  • Optics Express, Vol. 15, Issue 25
  • DOI: 10.1364/OE.15.016667

Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves
journal, August 2007

  • Feng, Liang; Tetz, Kevin A.; Slutsky, Boris
  • Applied Physics Letters, Vol. 91, Issue 8
  • DOI: 10.1063/1.2772756

Collimated Plasmon Beam: Nondiffracting versus Linearly Focused
journal, January 2013


Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons
journal, October 2011

  • Li, Lin; Li, Tao; Wang, Shuming
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl2024855

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings
journal, January 2006

  • Steele, Jennifer M.; Liu, Zhaowei; Wang, Yuan
  • Optics Express, Vol. 14, Issue 12
  • DOI: 10.1364/OE.14.005664

A reconfigurable plasmofluidic lens
journal, August 2013

  • Zhao, Chenglong; Liu, Yongmin; Zhao, Yanhui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3305

Plasmonic Focusing in Symmetry Broken Nanocorrals
journal, February 2011

  • Fang, Zheyu; Peng, Qian; Song, Wentao
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl104333n

Plasmonic Luneburg and Eaton lenses
journal, January 2011

  • Zentgraf, Thomas; Liu, Yongmin; Mikkelsen, Maiken H.
  • Nature Nanotechnology, Vol. 6, Issue 3
  • DOI: 10.1038/nnano.2010.282

Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization
journal, January 2006


A Plasmonic Dimple Lens for Nanoscale Focusing of Light
journal, October 2009

  • Vedantam, Shantha; Lee, Hyojune; Tang, Japeck
  • Nano Letters, Vol. 9, Issue 10
  • DOI: 10.1021/nl9016368

Plasmon Nanomechanical Coupling for Nanoscale Transduction
journal, June 2013

  • Thijssen, Rutger; Verhagen, Ewold; Kippenberg, Tobias J.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl4015028

High-speed plasmonic phase modulators
journal, February 2014


Compact nanomechanical plasmonic phase modulators
journal, March 2015


PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator
journal, February 2009

  • Dionne, Jennifer A.; Diest, Kenneth; Sweatlock, Luke A.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803868k

Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper
journal, November 2012

  • Choo, Hyuck; Kim, Myung-Ki; Staffaroni, Matteo
  • Nature Photonics, Vol. 6, Issue 12, p. 838-844
  • DOI: 10.1038/nphoton.2012.277

Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides
journal, January 2009

  • Hill, Martin T.; Marell, Milan; Leong, Eunice S. P.
  • Optics Express, Vol. 17, Issue 13, p. 11107-11112
  • DOI: 10.1364/OE.17.011107

Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons
journal, January 2009


Efficient absorption of visible radiation by gap plasmon resonators
journal, January 2012

  • Nielsen, Michael G.; Pors, Anders; Albrektsen, Ole
  • Optics Express, Vol. 20, Issue 12
  • DOI: 10.1364/OE.20.013311

Metal-insulator-metal plasmonic absorbers: influence of lattice
journal, January 2014


Gap Surface Plasmon Waveguides with Enhanced Integration and Functionality
journal, December 2011

  • Gramotnev, Dmitri K.; Nielsen, Michael G.; Tan, Shiaw Juen
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203629m

Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch
journal, January 2015


Enhanced coupling between light and surface plasmons by nano-structured Fabry–Pérot resonator
journal, September 2011

  • Dennis, Brian S.; Aksyuk, Vladimir; Haftel, Michael I.
  • Journal of Applied Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.3638127

Polarization-Resolved Near-Field Characterization of Nanoscale Infrared Modes in Transmission Lines Fabricated by Gallium and Helium Ion Beam Milling
journal, June 2014

  • Sarriugarte, Paulo; Schnell, Martin; Chuvilin, Andrey
  • ACS Photonics, Vol. 1, Issue 7
  • DOI: 10.1021/ph500081k

Silicon-on-Insulator Platform for Integration of 3-D Nanoplasmonic Devices
journal, November 2011


On-Chip Hybrid Photonic–Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform
journal, January 2015

  • Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl503409k

Electrical detection of confined gap plasmons in metal–insulator–metal waveguides
journal, April 2009

  • Neutens, Pieter; Van Dorpe, Pol; De Vlaminck, Iwijn
  • Nature Photonics, Vol. 3, Issue 5
  • DOI: 10.1038/nphoton.2009.47

Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities
journal, January 2010

  • Flynn, Richard A.; Bussmann, Konrad; Simpkins, B. S.
  • Journal of Applied Physics, Vol. 107, Issue 1
  • DOI: 10.1063/1.3273480

Works referencing / citing this record:

Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks
journal, December 2016

  • Debu, Desalegn T.; Ghosh, Pijush K.; French, David
  • Optical Materials Express, Vol. 7, Issue 1
  • DOI: 10.1364/ome.7.000073