skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Hardest Superconducting Metal Nitride

Abstract

Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

Authors:
 [1];  [2];  [3];  [3];  [2];  [4];  [5]
  1. University of Nevada, HiPSEC & Physics Dept., Las Vegas, NV (United States); Sichuan University, Chengdu, (China). Inst. of Atomic and Molecular Physics; Los Alamos National Laboratory, Los Alamos, NM (United States)
  2. University of Nevada, HiPSEC & Physics Dept., Las Vegas, NV (United States)
  3. Los Alamos National Lab., NM (United States)
  4. Sichuan University, Chengdu, (China). Inst. of Atomic and Molecular Physics
  5. University of Nevada, HiPSEC & Physics Dept., Las Vegas, NV (United States); Los Alamos National Lab., NM (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1214836
Alternate Identifier(s):
OSTI ID: 1222487; OSTI ID: 1222589; OSTI ID: 1222590; OSTI ID: 1332920
Grant/Contract Number:  
AC52-06NA25396; AC02-06CH11357; FC52-06NA27684; NA0001974; FG02-99ER45775; NA0001982
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal Issue: 09, 2015; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Solid-phase synthesis; superconducting; Transition–metal (TM) nitrides; mechanical properties; solid-phase synthesis; superconducting properties and materials

Citation Formats

Wang, Shanmin, Antonio, Daniel, Yu, Xiaohui, Zhang, Jianzhong, Cornelius, Andrew L., He, Duanwei, and Zhao, Yusheng. The Hardest Superconducting Metal Nitride. United States: N. p., 2015. Web. doi:10.1038/srep13733.
Wang, Shanmin, Antonio, Daniel, Yu, Xiaohui, Zhang, Jianzhong, Cornelius, Andrew L., He, Duanwei, & Zhao, Yusheng. The Hardest Superconducting Metal Nitride. United States. doi:10.1038/srep13733.
Wang, Shanmin, Antonio, Daniel, Yu, Xiaohui, Zhang, Jianzhong, Cornelius, Andrew L., He, Duanwei, and Zhao, Yusheng. Thu . "The Hardest Superconducting Metal Nitride". United States. doi:10.1038/srep13733. https://www.osti.gov/servlets/purl/1214836.
@article{osti_1214836,
title = {The Hardest Superconducting Metal Nitride},
author = {Wang, Shanmin and Antonio, Daniel and Yu, Xiaohui and Zhang, Jianzhong and Cornelius, Andrew L. and He, Duanwei and Zhao, Yusheng},
abstractNote = {Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.},
doi = {10.1038/srep13733},
journal = {Scientific Reports},
number = 09, 2015,
volume = 5,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Synthesis of Novel Transition Metal Nitrides IrN 2 and OsN 2
journal, April 2006


Physical chemistry of intrinsic hardness
journal, May 1996


On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects
journal, July 2012


Synthesis and characterization of a binary noble metal nitride
journal, April 2004

  • Gregoryanz, Eugene; Sanloup, Chrystele; Somayazulu, M.
  • Nature Materials, Vol. 3, Issue 5
  • DOI: 10.1038/nmat1115

Material selection for hard coatings
journal, November 1986

  • Holleck, H.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 4, Issue 6
  • DOI: 10.1116/1.573700

Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides
journal, April 2001


Novel Rhenium Nitrides
journal, August 2010


Hardness and fracture toughness of moissanite
journal, October 2005


Synthesis of Structurally Defined Ta 3 N 5 Particles by Flux-Assisted Nitridation
journal, January 2011

  • Takata, Tsuyoshi; Lu, Daling; Domen, Kazunari
  • Crystal Growth & Design, Vol. 11, Issue 1
  • DOI: 10.1021/cg901025e

Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD
journal, April 2003


Structural distortion and suppression of superconductivity in stoichiometric B 1 MoN epitaxial thin films
journal, February 2006


GaN crystals prepared through solid-state metathesis reaction from NaGaO2 and BN under high pressure and high temperature
journal, February 2011


High-Pressure Synthesis of Tantalum Nitride Having Orthorhombic U 2 S 3 Structure
journal, July 2009

  • Zerr, Andreas; Miehe, Gerhard; Li, Jinwang
  • Advanced Functional Materials, Vol. 19, Issue 14
  • DOI: 10.1002/adfm.200801923

Experimental invalidation of phase-transition-induced elastic softening in CrN
journal, August 2012


Synthetic Route to Metal Nitrides: High-Pressure Solid-State Metathesis Reaction
journal, November 2013

  • Lei, Li; Yin, Wenwen; Jiang, Xiaodong
  • Inorganic Chemistry, Vol. 52, Issue 23
  • DOI: 10.1021/ic4014834

Neutron Diffraction Studies of the Compounds MnN and FeN
journal, April 2001

  • Suzuki, Kenji; Yamaguchi, Yasuo; Kaneko, Takejiro
  • Journal of the Physical Society of Japan, Vol. 70, Issue 4
  • DOI: 10.1143/JPSJ.70.1084

Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides
journal, August 2012

  • Wang, Shanmin; Yu, Xiaohui; Lin, Zhijun
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301516w

High T c superconducting B1 phase MoN films prepared by low‐energy ion‐assisted deposition
journal, July 1987

  • Savvides, N.
  • Journal of Applied Physics, Vol. 62, Issue 2
  • DOI: 10.1063/1.339787

Comparative compressibilities of calcite-structure carbonates; deviations from empirical relations
journal, June 1999

  • Zhang, Jianzhong; Reeder, Richard J.
  • American Mineralogist, Vol. 84, Issue 5-6
  • DOI: 10.2138/am-1999-5-620

Hardness analysis of cubic metal mononitrides from first principles
journal, May 2012


Phase-Transition Induced Elastic Softening and Band Gap Transition in Semiconducting PbS at High Pressure
journal, July 2013

  • Wang, Shanmin; Zhang, Jianzhong; Zhang, Yi
  • Inorganic Chemistry, Vol. 52, Issue 15
  • DOI: 10.1021/ic400801s

High pressure synthesis of superconducting nitrides in the MoN–NbN system
journal, January 2010

  • Bailey, Edward; McMillan, Paul F.
  • Journal of Materials Chemistry, Vol. 20, Issue 20
  • DOI: 10.1039/b920468g

Bonding study of TiC and TiN. II. Theory
journal, February 1985


Superconducting group-IV semiconductors
journal, May 2009

  • Blase, Xavier; Bustarret, Etienne; Chapelier, Claude
  • Nature Materials, Vol. 8, Issue 5
  • DOI: 10.1038/nmat2425

Synthesis and Characterization of the Nitrides of Platinum and Iridium
journal, March 2006


Synthesis of GaN Crystals Through Solid-State Metathesis Reaction Under High Pressure
journal, March 2009

  • Lei, Li; He, Duanwei
  • Crystal Growth & Design, Vol. 9, Issue 3
  • DOI: 10.1021/cg801017h

Tungsten tetraboride, an inexpensive superhard material
journal, June 2011

  • Mohammadi, R.; Lech, A. T.; Xie, M.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 27
  • DOI: 10.1073/pnas.1102636108

Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum
journal, December 2009


The mechanical properties of MoN under high pressure and effect of metallic bonding on its hardness
journal, February 2014


Synthesis of U 3 Se 5 and U 3 Te 5 type polymorphs of Ta 3 N 5 by combining high pressure–temperature pathways with a chemical precursor approach
journal, January 2014

  • Salamat, Ashkan; Woodhead, Katherine; Shah, S. Imran U.
  • Chem. Commun., Vol. 50, Issue 70
  • DOI: 10.1039/C4CC05147E

Crystal structure and magnetic properties of the compound CoN
journal, July 1995


A New Molybdenum Nitride Catalyst with Rhombohedral MoS 2 Structure for Hydrogenation Applications
journal, April 2015

  • Wang, Shanmin; Ge, Hui; Sun, Shouli
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/jacs.5b01446

Phonon and elastic instabilities in MoC and MoN
journal, February 2000


Hard superconducting nitrides
journal, February 2005

  • Chen, X. -J.; Struzhkin, V. V.; Wu, Z.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 9
  • DOI: 10.1073/pnas.0500174102

Synthesis of Tetragonal and Orthorhombic Polymorphs of Hf 3 N 4 by High-Pressure Annealing of a Prestructured Nanocrystalline Precursor
journal, June 2013

  • Salamat, Ashkan; Hector, Andrew L.; Gray, Benjamin M.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403368b

Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD
journal, August 2013


Phase transition in B1-type Mo1−xNbxN sputtered films under ammonia annealing
journal, September 1989


Harder than diamond: Dreams and reality
journal, January 2002

  • Brazhkin, Vadim V.; Lyapin, Alexander G.; Hemley, Russell J.
  • Philosophical Magazine A, Vol. 82, Issue 2
  • DOI: 10.1080/01418610208239596

Synthesis and characterisation of hexagonal molybdenum nitrides
journal, August 2006

  • Ganin, Alexey Yu.; Kienle, Lorenz; Vajenine, Grigori V.
  • Journal of Solid State Chemistry, Vol. 179, Issue 8
  • DOI: 10.1016/j.jssc.2006.05.025

Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure
journal, February 2003

  • Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf
  • Nature Materials, Vol. 2, Issue 3
  • DOI: 10.1038/nmat836

High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN 1 x ) phases
journal, October 2003


Electronic mechanism of hardness enhancement in transition-metal carbonitrides
journal, May 1999

  • Jhi, Seung-Hoon; Ihm, Jisoon; Louie, Steven G.
  • Nature, Vol. 399, Issue 6732
  • DOI: 10.1038/20148

Revisit of Pressure-Induced Phase Transition in PbSe: Crystal Structure, and Thermoelastic and Electrical Properties
journal, April 2015


Synthesis of Stoichiometric and Bulk CrN through a Solid-State Ion-Exchange Reaction
journal, October 2012

  • Chen, Miao; Wang, Shanmin; Zhang, Jianzhong
  • Chemistry - A European Journal, Vol. 18, Issue 48
  • DOI: 10.1002/chem.201202197

Determination of the slip systems in single crystals of tungsten monocarbide
journal, July 1965


Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN
journal, January 1985

  • Papaconstantopoulos, D. A.; Pickett, W. E.; Klein, B. M.
  • Physical Review B, Vol. 31, Issue 2
  • DOI: 10.1103/PhysRevB.31.752

Structure and mechanical stability of molybdenum nitrides: A first-principles study
journal, October 2007


Superconductivity: Nitride offers 30K transition?
journal, April 1984

  • Papaconstantopoulos, D. A.; Pickett, W. E.; Klein, B. M.
  • Nature, Vol. 308, Issue 5959
  • DOI: 10.1038/308494a0

Superconductivity in MoN films with NaCl structure
journal, July 1984


Epitaxial Superconducting δ-MoN Films Grown by a Chemical Solution Method
journal, December 2011

  • Zhang, Yingying; Haberkorn, Nestor; Ronning, Filip
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja208868k

Superhard B–C–N materials synthesized in nanostructured bulks
journal, December 2002

  • Zhao, Y.; He, D. W.; Daemen, L. L.
  • Journal of Materials Research, Vol. 17, Issue 12
  • DOI: 10.1557/JMR.2002.0454

Determination of the crystal structure of δ-MoN by neutron diffraction
journal, April 2004

  • Bull, Craig L.; McMillan, Paul F.; Soignard, Emmanuel
  • Journal of Solid State Chemistry, Vol. 177, Issue 4-5
  • DOI: 10.1016/j.jssc.2003.11.033

Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies)
journal, January 2012

  • Leinenweber, K. D.; Tyburczy, J. A.; Sharp, T. G.
  • American Mineralogist, Vol. 97, Issue 2-3
  • DOI: 10.2138/am.2012.3844