DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

Abstract

Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

Authors:
 [1];  [1];  [1];  [2];  [2];  [1];  [1]
  1. Univ. of Florida, Gainesville, FL (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1214577
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 117; Journal Issue: 24; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; thermal conductivity; multilayers; heat conduction; melting; microstructural properties

Citation Formats

Hooper, R. J., Davis, C. G., Johns, P. M., Adams, D. P., Hirschfeld, D., Nino, J. C., and Manuel, M. V. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction. United States: N. p., 2015. Web. doi:10.1063/1.4922981.
Hooper, R. J., Davis, C. G., Johns, P. M., Adams, D. P., Hirschfeld, D., Nino, J. C., & Manuel, M. V. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction. United States. https://doi.org/10.1063/1.4922981
Hooper, R. J., Davis, C. G., Johns, P. M., Adams, D. P., Hirschfeld, D., Nino, J. C., and Manuel, M. V. Fri . "Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction". United States. https://doi.org/10.1063/1.4922981. https://www.osti.gov/servlets/purl/1214577.
@article{osti_1214577,
title = {Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction},
author = {Hooper, R. J. and Davis, C. G. and Johns, P. M. and Adams, D. P. and Hirschfeld, D. and Nino, J. C. and Manuel, M. V.},
abstractNote = {Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.},
doi = {10.1063/1.4922981},
journal = {Journal of Applied Physics},
number = 24,
volume = 117,
place = {United States},
year = {Fri Jun 26 00:00:00 EDT 2015},
month = {Fri Jun 26 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of physical properties of components on reactive nanolayer joining
journal, June 2005

  • Wang, J.; Besnoin, E.; Knio, O. M.
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1915540

Investigating the effect of applied pressure on reactive multilayer foil joining
journal, October 2004


Joining of stainless-steel specimens with nanostructured Al/Ni foils
journal, January 2004

  • Wang, J.; Besnoin, E.; Duckham, A.
  • Journal of Applied Physics, Vol. 95, Issue 1
  • DOI: 10.1063/1.1629390

Room-temperature soldering with nanostructured foils
journal, November 2003

  • Wang, J.; Besnoin, E.; Duckham, A.
  • Applied Physics Letters, Vol. 83, Issue 19
  • DOI: 10.1063/1.1623943

Reactive nanostructured foil used as a heat source for joining titanium
journal, August 2004

  • Duckham, A.; Spey, S. J.; Wang, J.
  • Journal of Applied Physics, Vol. 96, Issue 4
  • DOI: 10.1063/1.1769097

Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry
journal, December 1997


Reactive multilayers fabricated by vapor deposition: A critical review
journal, February 2015


Effect of reactant and product melting on self-propagating reactions in multilayer foils
journal, November 2002

  • Besnoin, Etienne; Cerutti, Stefano; Knio, Omar M.
  • Journal of Applied Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.1509840

Modeling of the self-propagating reactions of nickel and aluminum multilayered foils
journal, April 2009

  • Gunduz, Ibrahim Emre; Fadenberger, Konrad; Kokonou, Maria
  • Journal of Applied Physics, Vol. 105, Issue 7
  • DOI: 10.1063/1.3091284

Heat transfer modeling of multilayer reactive foil
journal, June 2011


Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils
journal, February 2000

  • Gavens, A. J.; Van Heerden, D.; Mann, A. B.
  • Journal of Applied Physics, Vol. 87, Issue 3, p. 1255-1263
  • DOI: 10.1063/1.372005

Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils
journal, August 1997

  • Mann, A. B.; Gavens, A. J.; Reiss, M. E.
  • Journal of Applied Physics, Vol. 82, Issue 3
  • DOI: 10.1063/1.365886

Numerical predictions of oscillatory combustion in reactive multilayers
journal, July 1999

  • Jayaraman, S.; Knio, O. M.; Mann, A. B.
  • Journal of Applied Physics, Vol. 86, Issue 2
  • DOI: 10.1063/1.370807

Reactive Ni/Ti nanolaminates
journal, November 2009

  • Adams, D. P.; Rodriguez, M. A.; McDonald, J. P.
  • Journal of Applied Physics, Vol. 106, Issue 9, Article No. 093505
  • DOI: 10.1063/1.3253591

Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films
journal, December 2006

  • Adams, D. P.; Rodriguez, M. A.; Tigges, C. P.
  • Journal of Materials Research, Vol. 21, Issue 12
  • DOI: 10.1557/jmr.2006.0387

Pulsed laser ignition of reactive multilayer films
journal, April 2006

  • Picard, Yoosuf N.; Adams, David P.; Palmer, Jeremy A.
  • Applied Physics Letters, Vol. 88, Issue 14
  • DOI: 10.1063/1.2191952

Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates
journal, September 2008

  • Picard, Yoosuf N.; McDonald, Joel P.; Friedmann, Thomas A.
  • Applied Physics Letters, Vol. 93, Issue 10
  • DOI: 10.1063/1.2981570

Mathematical modelling of solidification and melting: a review
journal, July 1996

  • Hu, Henry; Argyropoulos, Stavros A.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 4, Issue 4
  • DOI: 10.1088/0965-0393/4/4/004

Algebraic Representation of Thermodynamic Properties and the Classification of Solutions
journal, February 1948

  • Redlich, Otto; Kister, A. T.
  • Industrial & Engineering Chemistry, Vol. 40, Issue 2
  • DOI: 10.1021/ie50458a036

Thermodynamic Analysis of the Phase Equilibria of the Nb–Ni–Ti System
journal, January 2005

  • Matsumoto, Satoshi; Tokunaga, Tatsuya; Ohtani, Hiroshi
  • MATERIALS TRANSACTIONS, Vol. 46, Issue 12
  • DOI: 10.2320/matertrans.46.2920

Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems
journal, December 2012


First-Principles Calculations and CALPHAD Modeling of Thermodynamics
journal, September 2009


An Experimental Investigation of the Density of Bismuth in the Condensed State in a Wide Temperature Range
journal, May 2005


Review: Density measurements in liquid metals and liquid binary alloy systems — A survey
journal, April 1972

  • Veazey, S. D.; Roe, W. C.
  • Journal of Materials Science, Vol. 7, Issue 4
  • DOI: 10.1007/BF02403409

Physicochemical Properties of Sb, Sn, Zn, and Sb–Sn System
journal, February 2013

  • Gancarz, Tomasz; Gąsior, Władysław; Henein, Hani
  • International Journal of Thermophysics, Vol. 34, Issue 2
  • DOI: 10.1007/s10765-013-1407-1

The density of alloys of tin—lead system in the solid and liquid states
journal, May 2006


Density, electrical resistivity and magnetic susceptibility of Sn-Bi alloys at high temperatures
journal, May 2012


The density and interdiffusion coefficients of bismuth-tin melts of eutectic and near-eutectic composition
journal, April 2010


Thermal Conductivities of Some Metals in the Solid and Liquid States
journal, August 1923


Thermal conductivity of Sn-Bi alloys in the solid and liquid states
journal, October 1968

  • Dutchak, Ya. I.; Osipenko, V. P.; Panasyuk, P. V.
  • Soviet Physics Journal, Vol. 11, Issue 10
  • DOI: 10.1007/BF00822489

Thermal conductivity of liquid metals and metallic alloys
journal, August 1999


AN EQUATION FOR THE REPRESENTATION OF HIGH-TEMPERATURE HEAT CONTENT DATA 1
journal, August 1932

  • Maier, Chas. G.; Kelley, K. K.
  • Journal of the American Chemical Society, Vol. 54, Issue 8
  • DOI: 10.1021/ja01347a029

Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides
journal, January 2010


Radiation loss in the flash method for thermal diffusivity
journal, February 1975

  • Clark III, L. M.; Taylor, R. E.
  • Journal of Applied Physics, Vol. 46, Issue 2
  • DOI: 10.1063/1.321635

Thermal contact conductance
journal, March 1969

  • Cooper, M. G.; Mikic, B. B.; Yovanovich, M. M.
  • International Journal of Heat and Mass Transfer, Vol. 12, Issue 3
  • DOI: 10.1016/0017-9310(69)90011-8

ImageJ for microscopy
journal, July 2007


Shape identification and particles size distribution from basic shape parameters using ImageJ
journal, October 2008

  • Igathinathane, C.; Pordesimo, L. O.; Columbus, E. P.
  • Computers and Electronics in Agriculture, Vol. 63, Issue 2
  • DOI: 10.1016/j.compag.2008.02.007

Rapid solidification processing with specific application to aluminium alloys
journal, January 1992

  • Lavernia, E. J.; Ayers, J. D.; Srivatsan, T. S.
  • International Materials Reviews, Vol. 37, Issue 1
  • DOI: 10.1179/imr.1992.37.1.1

About the banded structure in rapidly solidified dendritic and eutectic alloys
journal, May 1992


Works referencing / citing this record:

Joining with Reactive Nano-Multilayers: Influence of Thermal Properties of Components on Joint Microstructure and Mechanical Performance
journal, January 2019

  • Rheingans, Bastian; Spies, Irina; Schumacher, Axel
  • Applied Sciences, Vol. 9, Issue 2
  • DOI: 10.3390/app9020262