skip to main content


Title: Two-step growth of two-dimensional WSe 2/MoSe 2 heterostructures

Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe 2 was synthesized first and followed by an epitaxial growth of WSe 2 on the edge and on the top surface of MoSe 2. Compared to previously reported one-step growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe 2/MoSe 2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe 2/WSe 2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe 2/MoSe 2 bilayer and the exposed MoSe 2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency ofmore » 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Rice Univ., Houston, TX (United States)
  2. Nanyang Technological Univ. (Singapore)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 15; Journal Issue: 9; Journal ID: ISSN 1530-6984
American Chemical Society
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; 2D heterostructures; two-step growth; MoSe2; WSe2; CVD
OSTI Identifier: