DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy

Abstract

We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal-nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemblemore » but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [2]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); King Abdulaziz City for Science and Technology (Kingdom of Saudi Arabia)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
Defense Threat Reduction Agency (DTRA); USDOE Office of Science (SC)
OSTI Identifier:
1214195
Alternate Identifier(s):
OSTI ID: 1545127
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 1; Journal Issue: 1; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Chen, Qian, Cho, Hoduk, Manthiram, Karthish, Yoshida, Mark, Ye, Xingchen, and Alivisatos, A. Paul. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. United States: N. p., 2015. Web. doi:10.1021/acscentsci.5b00001.
Chen, Qian, Cho, Hoduk, Manthiram, Karthish, Yoshida, Mark, Ye, Xingchen, & Alivisatos, A. Paul. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. United States. https://doi.org/10.1021/acscentsci.5b00001
Chen, Qian, Cho, Hoduk, Manthiram, Karthish, Yoshida, Mark, Ye, Xingchen, and Alivisatos, A. Paul. Mon . "Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy". United States. https://doi.org/10.1021/acscentsci.5b00001. https://www.osti.gov/servlets/purl/1214195.
@article{osti_1214195,
title = {Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy},
author = {Chen, Qian and Cho, Hoduk and Manthiram, Karthish and Yoshida, Mark and Ye, Xingchen and Alivisatos, A. Paul},
abstractNote = {We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal-nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.},
doi = {10.1021/acscentsci.5b00001},
journal = {ACS Central Science},
number = 1,
volume = 1,
place = {United States},
year = {Mon Mar 23 00:00:00 EDT 2015},
month = {Mon Mar 23 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: In situ liquid phase TEM imaging of tip-to-tip assembly of Au nanorods. (A) The liquid flow TEM setup, with Si3N4 windowed microchips. Well-dispersed Au nanorods self-assemble under the illumination of electron beam. (B) Representative TEM image (left) and schematics (right) showing the final assembled structures. (C) A timemore » series of TEM images showing how nanorods approach and attach to each other. Red arrows highlight the trajectories of nanorods before they attach to the cluster of growing rod assemblies. Scale bar is 100 nm.« less

Save / Share:

Works referenced in this record:

Long range interactions in nanoscale science
journal, June 2010

  • French, Roger H.; Parsegian, V. Adrian; Podgornik, Rudolf
  • Reviews of Modern Physics, Vol. 82, Issue 2
  • DOI: 10.1103/RevModPhys.82.1887

The role of interparticle and external forces in nanoparticle assembly
journal, July 2008

  • Min, Younjin; Akbulut, Mustafa; Kristiansen, Kai
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2206

Electrostatics of nanosystems: Application to microtubules and the ribosome
journal, August 2001

  • Baker, N. A.; Sept, D.; Joseph, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 18, p. 10037-10041
  • DOI: 10.1073/pnas.181342398

Nanostructure-mediated thermal therapy – the path from bench to clinic
journal, June 2006


Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties
journal, October 2013

  • Young, Kaylie L.; Ross, Michael B.; Blaber, Martin G.
  • Advanced Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adma.201302938

Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy
journal, February 2012

  • Park, Jungwon; Zheng, Haimei; Lee, Won Chul
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203837m

Measuring colloidal interactions with confocal microscopy
journal, July 2007

  • Royall, C. Patrick; Louis, Ard A.; Tanaka, Hajime
  • The Journal of Chemical Physics, Vol. 127, Issue 4
  • DOI: 10.1063/1.2755962

Nanoscale Forces and Their Uses in Self-Assembly
journal, July 2009

  • Bishop, Kyle J. M.; Wilmer, Christopher E.; Soh, Siowling
  • Small, Vol. 5, Issue 14
  • DOI: 10.1002/smll.200900358

Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods
journal, September 2004

  • Thomas, K. George; Barazzouk, Said; Ipe, Binil Itty
  • The Journal of Physical Chemistry B, Vol. 108, Issue 35
  • DOI: 10.1021/jp049167v

X-ray Crystallographic Structure of the Norwalk Virus Capsid
journal, October 1999


In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles
journal, February 2013

  • Liu, Yuzi; Lin, Xiao-Min; Sun, Yugang
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja312620e

Inorganic Micelles as Efficient and Recyclable Micellar Catalysts
journal, December 2013

  • Zhang, Qiao; Shu, Xing-Zhong; Lucas, J. Matthew
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4045372

Mesophase behaviour of polyhedral particles
journal, February 2011

  • Agarwal, Umang; Escobedo, Fernando A.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2959

Clusters of Charged Janus Spheres
journal, November 2006

  • Hong, Liang; Cacciuto, Angelo; Luijten, Erik
  • Nano Letters, Vol. 6, Issue 11
  • DOI: 10.1021/nl061857i

Microscopic measurement of the pair interaction potential of charge-stabilized colloid
journal, July 1994


Long-timescale simulation methods
journal, April 2005


Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy
journal, September 2014

  • Schneider, Nicholas M.; Norton, Michael M.; Mendel, Brian J.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 38
  • DOI: 10.1021/jp507400n

Self-Assembly at All Scales
journal, March 2002

  • Whitesides, George M.; Grzybowski, Bartosz
  • Science, Vol. 295, Issue 5564, p. 2418-2421
  • DOI: 10.1126/science.1070821

The amyloid state and its association with protein misfolding diseases
journal, May 2014

  • Knowles, Tuomas P. J.; Vendruscolo, Michele; Dobson, Christopher M.
  • Nature Reviews Molecular Cell Biology, Vol. 15, Issue 6
  • DOI: 10.1038/nrm3810

Three-Dimensional Plasmon Rulers
journal, June 2011


Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
journal, February 2006

  • Huang, Xiaohua; El-Sayed, Ivan H.; Qian, Wei
  • Journal of the American Chemical Society, Vol. 128, Issue 6, p. 2115-2120
  • DOI: 10.1021/ja057254a

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Transition from Isolated to Collective Modes in Plasmonic Oligomers
journal, July 2010

  • Hentschel, Mario; Saliba, Michael; Vogelgesang, Ralf
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl101938p

Real-Time Imaging of Pt3Fe Nanorod Growth in Solution
journal, May 2012


Brownian Motion: A Tool To Determine the Pair Potential between Colloid Particles
journal, May 1994

  • Vondermassen, Kristina; Bongers, Joern; Mueller, Andreas
  • Langmuir, Vol. 10, Issue 5
  • DOI: 10.1021/la00017a007

Hydrophobic forces and the length limit of foldable protein domains
journal, June 2012

  • Lin, M. M.; Zewail, A. H.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 25
  • DOI: 10.1073/pnas.1207382109

Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures
journal, April 2013

  • Ye, Xingchen; Gao, Yuzhi; Chen, Jun
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400653s

Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation
journal, September 1983


In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles
journal, February 2013

  • Liu, Yuzi; Lin, Xiao-Min; Sun, Yugang
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja312620e

Long range interactions in nanoscale science
text, January 2010

  • French, Roger H.; Parsegian, V. Adrian; Podgornik, Rudolf
  • American Physical Society
  • DOI: 10.5451/unibas-ep53256

Staged Self-Assembly of Colloidal Metastructures
journal, June 2012

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja303434d

In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles
journal, September 2014

  • Sutter, E.; Jungjohann, K.; Bliznakov, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5946

Tunable plasmonic lattices of silver nanocrystals
journal, July 2007

  • Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong
  • Nature Nanotechnology, Vol. 2, Issue 7
  • DOI: 10.1038/nnano.2007.189

In situ Study of Oxidative Etching of Palladium Nanocrystals by Liquid Cell Electron Microscopy
journal, June 2014

  • Jiang, Yingying; Zhu, Guomin; Lin, Fang
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl500670q

Plasmonic Resonances in Self-Assembled Reduced Symmetry Gold Nanorod Structures
journal, April 2013

  • Biswas, Sushmita; Duan, Jinsong; Nepal, Dhriti
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl4007358

3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy
journal, August 2013

  • Chen, Qian; Smith, Jessica M.; Park, Jungwon
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402694n

Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy
journal, February 2005

  • Sönnichsen, Carsten; Alivisatos, A. Paul
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl048089k

Competition of shape and interaction patchiness for self-assembling nanoplates
journal, May 2013

  • Ye, Xingchen; Chen, Jun; Engel, Michael
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1651

Electron microscopy of specimens in liquid
journal, October 2011

  • de Jonge, Niels; Ross, Frances M.
  • Nature Nanotechnology, Vol. 6, Issue 11, p. 695-704
  • DOI: 10.1038/nnano.2011.161

The role of interparticle and external forces in nanoparticle assembly
journal, July 2008

  • Min, Younjin; Akbulut, Mustafa; Kristiansen, Kai
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2206

Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
journal, November 2011

  • Henzie, Joel; Grünwald, Michael; Widmer-Cooper, Asaph
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3178

Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy
journal, February 2012

  • Park, Jungwon; Zheng, Haimei; Lee, Won Chul
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203837m

Tinkering with nature
journal, June 2011

  • Rehling, Peter
  • Nature Reviews Molecular Cell Biology, Vol. 12, Issue 7
  • DOI: 10.1038/nrm3137

Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers
journal, July 2007

  • Nie, Zhihong; Fava, Daniele; Kumacheva, Eugenia
  • Nature Materials, Vol. 6, Issue 8
  • DOI: 10.1038/nmat1954

The amyloid state and its association with protein misfolding diseases
journal, May 2014

  • Knowles, Tuomas P. J.; Vendruscolo, Michele; Dobson, Christopher M.
  • Nature Reviews Molecular Cell Biology, Vol. 15, Issue 6
  • DOI: 10.1038/nrm3810

Nanoscale Forces and Their Uses in Self-Assembly
journal, July 2009

  • Bishop, Kyle J. M.; Wilmer, Christopher E.; Soh, Siowling
  • Small, Vol. 5, Issue 14
  • DOI: 10.1002/smll.200900358

Electrostatics of nanosystems: Application to microtubules and the ribosome
journal, August 2001

  • Baker, N. A.; Sept, D.; Joseph, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 18, p. 10037-10041
  • DOI: 10.1073/pnas.181342398

Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties
journal, October 2013

  • Young, Kaylie L.; Ross, Michael B.; Blaber, Martin G.
  • Advanced Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adma.201302938

Clusters of Charged Janus Spheres
journal, November 2006

  • Hong, Liang; Cacciuto, Angelo; Luijten, Erik
  • Nano Letters, Vol. 6, Issue 11
  • DOI: 10.1021/nl061857i

Mesophase behaviour of polyhedral particles
journal, February 2011

  • Agarwal, Umang; Escobedo, Fernando A.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2959

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Plasmonic Resonances in Self-Assembled Reduced Symmetry Gold Nanorod Structures
journal, April 2013

  • Biswas, Sushmita; Duan, Jinsong; Nepal, Dhriti
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl4007358

A molecular ruler based on plasmon coupling of single gold and silver nanoparticles
journal, May 2005

  • Sönnichsen, Carsten; Reinhard, Björn M.; Liphardt, Jan
  • Nature Biotechnology, Vol. 23, Issue 6
  • DOI: 10.1038/nbt1100

Inorganic Micelles as Efficient and Recyclable Micellar Catalysts
journal, December 2013

  • Zhang, Qiao; Shu, Xing-Zhong; Lucas, J. Matthew
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4045372

In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles
journal, September 2014

  • Sutter, E.; Jungjohann, K.; Bliznakov, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5946

Hydrophobic forces and the length limit of foldable protein domains
journal, June 2012

  • Lin, M. M.; Zewail, A. H.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 25
  • DOI: 10.1073/pnas.1207382109

Plasmon coupling measures up
journal, June 2005

  • Thaxton, C. Shad; Mirkin, Chad A.
  • Nature Biotechnology, Vol. 23, Issue 6
  • DOI: 10.1038/nbt0605-681

Staged Self-Assembly of Colloidal Metastructures
journal, June 2012

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja303434d

Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures
journal, April 2013

  • Ye, Xingchen; Gao, Yuzhi; Chen, Jun
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400653s

Measuring colloidal interactions with confocal microscopy
journal, July 2007

  • Royall, C. Patrick; Louis, Ard A.; Tanaka, Hajime
  • The Journal of Chemical Physics, Vol. 127, Issue 4
  • DOI: 10.1063/1.2755962

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics
journal, June 2011


Brownian Motion: A Tool To Determine the Pair Potential between Colloid Particles
journal, May 1994

  • Vondermassen, Kristina; Bongers, Joern; Mueller, Andreas
  • Langmuir, Vol. 10, Issue 5
  • DOI: 10.1021/la00017a007

X-ray structure of a protein-conducting channel
journal, December 2003

  • Berg, Bert van den; Clemons, William M.; Collinson, Ian
  • Nature, Vol. 427, Issue 6969
  • DOI: 10.1038/nature02218

Hybrid Nanorod-Polymer Solar Cells
journal, March 2002

  • Huynh, W. U.; Dittmer, Janke J.; Alivisatos, A. Paul
  • Science, Vol. 295, Issue 5564, p. 2425-2427
  • DOI: 10.1126/science.1069156

3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy
journal, August 2013

  • Chen, Qian; Smith, Jessica M.; Park, Jungwon
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402694n

Self-Assembled Plasmonic Nanoparticle Clusters
journal, May 2010


Understanding amyloid aggregation by statistical analysis of atomic force microscopy images
journal, April 2010

  • Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme
  • Nature Nanotechnology, Vol. 5, Issue 6
  • DOI: 10.1038/nnano.2010.59

In situ Study of Oxidative Etching of Palladium Nanocrystals by Liquid Cell Electron Microscopy
journal, June 2014

  • Jiang, Yingying; Zhu, Guomin; Lin, Fang
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl500670q

Competition of shape and interaction patchiness for self-assembling nanoplates
journal, May 2013

  • Ye, Xingchen; Chen, Jun; Engel, Michael
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1651

Hybrid Nanorod-Polymer Solar Cells
journal, March 2002

  • Huynh, W. U.; Dittmer, Janke J.; Alivisatos, A. Paul
  • Science, Vol. 295, Issue 5564, p. 2425-2427
  • DOI: 10.1126/science.1069156

Transition from Isolated to Collective Modes in Plasmonic Oligomers
journal, July 2010

  • Hentschel, Mario; Saliba, Michael; Vogelgesang, Ralf
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl101938p

Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy
journal, February 2005

  • Sönnichsen, Carsten; Alivisatos, A. Paul
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl048089k

Nanocrystal bilayer for tandem catalysis
journal, April 2011

  • Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu
  • Nature Chemistry, Vol. 3, Issue 5
  • DOI: 10.1038/nchem.1018

Molecular dynamics simulations of biomolecules
journal, September 2002

  • Karplus, Martin; McCammon, J. Andrew
  • Nature Structural Biology, Vol. 9, Issue 9
  • DOI: 10.1038/nsb0902-646

Long-timescale simulation methods
journal, April 2005


Facet development during platinum nanocube growth
journal, August 2014


High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells
journal, April 2012


Self-Assembly at All Scales
journal, March 2002

  • Whitesides, George M.; Grzybowski, Bartosz
  • Science, Vol. 295, Issue 5564, p. 2418-2421
  • DOI: 10.1126/science.1070821

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Self-Assembled Plasmonic Nanoparticle Clusters
conference, January 2010

  • Fan, Jonathan; Wu, Chihhui; Bao, Kui
  • Quantum Electronics and Laser Science Conference, Conference on Lasers and Electro-Optics 2010
  • DOI: 10.1364/qels.2010.qfc3

Historical Perspective
book, January 2011


Works referencing / citing this record:

Dynamics of Templated Assembly of Nanoparticle Filaments within Nanochannels
journal, July 2017

  • Miele, Ermanno; Raj, Sanoj; Baraissov, Zhaslan
  • Advanced Materials, Vol. 29, Issue 37
  • DOI: 10.1002/adma.201702682

Liquid cell transmission electron microscopy and its applications
journal, January 2020

  • Pu, Shengda; Gong, Chen; Robertson, Alex W.
  • Royal Society Open Science, Vol. 7, Issue 1
  • DOI: 10.1098/rsos.191204

Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles
journal, November 2017

  • Kim, Byung Hyo; Yang, Jiwoong; Lee, Donghoon
  • Advanced Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adma.201703316

Real-time molecular scale observation of crystal formation
journal, November 2016

  • Schreiber, Roy E.; Houben, Lothar; Wolf, Sharon G.
  • Nature Chemistry, Vol. 9, Issue 4
  • DOI: 10.1038/nchem.2675

Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces
journal, March 2018


Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice
journal, June 2019


In situ formation of 1D nanostructures from ceria nanoparticle dispersions by liquid cell TEM irradiation
journal, October 2019


Nonadditivity of nanoparticle interactions
journal, October 2015


Nanoscale Self-Assembly: Seeing Is Understanding
journal, March 2015


Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures
journal, February 2019

  • Hu, Zhijian; Meng, Dejing; Lin, Feng
  • Advanced Optical Materials, Vol. 7, Issue 10
  • DOI: 10.1002/adom.201801590

Effect of the driving force on nanoparticles growth and shape: an opto-electrochemical study
journal, January 2020

  • Noël, Jean-Marc; Miranda Vieira, Mathias; Brasiliense, Vitor
  • Nanoscale, Vol. 12, Issue 5
  • DOI: 10.1039/c9nr09419a

Nanoparticle Characterization: What to Measure?
journal, May 2019


In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research
journal, September 2016


Oriented attachment growth of hundred-nanometer-size LaTaON 2 single crystals in molten salts for enhanced photoelectrochemical water splitting
journal, January 2018

  • Zhou, Junkang; Zhou, Chenguang; Shi, Zhan
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta02233j

Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase
journal, February 2019

  • Bhattarai, Nabraj; Prozorov, Tanya
  • Frontiers in Bioengineering and Biotechnology, Vol. 7
  • DOI: 10.3389/fbioe.2019.00019

Triggered self-assembly of magnetic nanoparticles
journal, March 2016

  • Ye, L.; Pearson, T.; Cordeau, Y.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23145

Investigating materials formation with liquid-phase and cryogenic TEM
journal, June 2016


Crystallization by particle attachment in synthetic, biogenic, and geologic environments
journal, July 2015

  • De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.
  • Science, Vol. 349, Issue 6247
  • DOI: 10.1126/science.aaa6760

In situ liquid cell TEM observation of solution-mediated interaction behaviour of Au/CdS nanoclusters
journal, January 2019

  • Wu, Yulian; Chen, Xin; Li, Chang
  • New Journal of Chemistry, Vol. 43, Issue 32
  • DOI: 10.1039/c9nj03520f

In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters
journal, April 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.