skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation

Abstract

The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na₂O reaction layer that was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a “shrinking-core” mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li anti-site defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes andmore » thus provide critical insights into further optimizing NIB materials through surface engineering.« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [4];  [4];  [5];  [1];  [2];  [1];  [3];  [1];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of Maryland, College Park, MD (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials.
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1214101
Report Number(s):
BNL-108330-2015-JA
Journal ID: ISSN 1530-6984; KC0403020
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 15; Journal Issue: 9; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodiation; kinetics; nickel oxides; reaction pathways; conversion electrodes; Center for Functional Nanomaterials

Citation Formats

He, Kai, Lin, Feng, Zhu, Yizhou, Yu, Xiqian, Li, Jing, Lin, Ruoqian, Nordlund, Dennis, Weng, Tsu Chien, Richards, Ryan M., Yang, Xiao -Qing, Doeff, Marca M., Stach, Eric A., Mo, Yifei, Xin, Huolin L., and Su, Dong. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation. United States: N. p., 2015. Web. https://doi.org/10.1021/acs.nanolett.5b01709.
He, Kai, Lin, Feng, Zhu, Yizhou, Yu, Xiqian, Li, Jing, Lin, Ruoqian, Nordlund, Dennis, Weng, Tsu Chien, Richards, Ryan M., Yang, Xiao -Qing, Doeff, Marca M., Stach, Eric A., Mo, Yifei, Xin, Huolin L., & Su, Dong. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation. United States. https://doi.org/10.1021/acs.nanolett.5b01709
He, Kai, Lin, Feng, Zhu, Yizhou, Yu, Xiqian, Li, Jing, Lin, Ruoqian, Nordlund, Dennis, Weng, Tsu Chien, Richards, Ryan M., Yang, Xiao -Qing, Doeff, Marca M., Stach, Eric A., Mo, Yifei, Xin, Huolin L., and Su, Dong. Wed . "Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation". United States. https://doi.org/10.1021/acs.nanolett.5b01709. https://www.osti.gov/servlets/purl/1214101.
@article{osti_1214101,
title = {Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation},
author = {He, Kai and Lin, Feng and Zhu, Yizhou and Yu, Xiqian and Li, Jing and Lin, Ruoqian and Nordlund, Dennis and Weng, Tsu Chien and Richards, Ryan M. and Yang, Xiao -Qing and Doeff, Marca M. and Stach, Eric A. and Mo, Yifei and Xin, Huolin L. and Su, Dong},
abstractNote = {The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na₂O reaction layer that was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a “shrinking-core” mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li anti-site defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes and thus provide critical insights into further optimizing NIB materials through surface engineering.},
doi = {10.1021/acs.nanolett.5b01709},
journal = {Nano Letters},
number = 9,
volume = 15,
place = {United States},
year = {2015},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Is lithium the new gold?
journal, June 2010


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Li-ion battery materials: present and future
journal, June 2015


Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

NiCo 2 O 4 Spinel:  First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries
journal, July 2002

  • Alcántara, R.; Jaraba, M.; Lavela, P.
  • Chemistry of Materials, Vol. 14, Issue 7
  • DOI: 10.1021/cm025556v

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations
journal, September 2014

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm501563f

Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

Single-Layered Ultrasmall Nanoplates of MoS 2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage
journal, January 2014

  • Zhu, Changbao; Mu, Xiaoke; van Aken, Peter A.
  • Angewandte Chemie International Edition, Vol. 53, Issue 8
  • DOI: 10.1002/anie.201308354

Conversion reactions for sodium-ion batteries
journal, January 2013

  • Klein, Franziska; Jache, Birte; Bhide, Amrtha
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 38
  • DOI: 10.1039/c3cp52125g

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation
journal, November 2011

  • Kushima, Akihiro; Liu, Xiao Hua; Zhu, Guang
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl201376j

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals
journal, January 2015

  • McDowell, Matthew T.; Lu, Zhenda; Koski, Kristie J.
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504436m

Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO 2 Materials
journal, June 2013

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402125e

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Sodiation via Heterogeneous Disproportionation in FeF 2 Electrodes for Sodium-Ion Batteries
journal, June 2014

  • He, Kai; Zhou, Yongning; Gao, Peng
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502284y

In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers
journal, May 2014

  • Liu, Ying; Fan, Feifei; Wang, Jiangwei
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500970a

Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials
journal, January 2015

  • He, Kai; Xin, Huolin L.; Zhao, Kejie
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl5049884

Phase evolution for conversion reaction electrodes in lithium-ion batteries
journal, February 2014

  • Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4358

Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity
journal, November 2014

  • Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07133

Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam
journal, July 2014

  • Lin, Feng; Markus, Isaac M.; Doeff, Marca M.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05694

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electron Diffraction from Small Crystals
journal, November 1952


Activation with Li Enables Facile Sodium Storage in Germanium
journal, September 2014

  • Kohandehghan, Alireza; Cui, Kai; Kupsta, Martin
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502812x

    Works referencing / citing this record:

    Computational Studies of Electrode Materials in Sodium-Ion Batteries
    journal, March 2018

    • Bai, Qiang; Yang, Lufeng; Chen, Hailong
    • Advanced Energy Materials, Vol. 8, Issue 17
    • DOI: 10.1002/aenm.201702998

    Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
    journal, May 2016

    • He, Kai; Zhang, Sen; Li, Jing
    • Nature Communications, Vol. 7, Issue 1
    • DOI: 10.1038/ncomms11441

    In‐situ structural characterizations of electrochemical intercalation of graphite compounds
    journal, October 2019


    Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
    journal, June 2016

    • Chao, Dongliang; Zhu, Changrong; Yang, Peihua
    • Nature Communications, Vol. 7, Issue 1
    • DOI: 10.1038/ncomms12122

    Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
    journal, July 2018


    Thermoelectrochemical Activation of CoO in Na Cells
    journal, January 2018

    • Yu, H.; Brown, Z. L.; Wei, C.
    • Journal of The Electrochemical Society, Vol. 165, Issue 9
    • DOI: 10.1149/2.0111809jes

    Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes
    journal, June 2016


    Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials
    journal, January 2018

    • Zhang, Huang; Hasa, Ivana; Passerini, Stefano
    • Advanced Energy Materials, Vol. 8, Issue 17
    • DOI: 10.1002/aenm.201702582

    Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
    journal, August 2017

    • Yuan, Yifei; Amine, Khalil; Lu, Jun
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/ncomms15806

    In situ analytical techniques for battery interface analysis
    journal, January 2018

    • Tripathi, Alok M.; Su, Wei-Nien; Hwang, Bing Joe
    • Chemical Society Reviews, Vol. 47, Issue 3
    • DOI: 10.1039/c7cs00180k

    In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling
    journal, August 2017

    • Asayesh-Ardakani, Hasti; Yao, Wentao; Yuan, Yifei
    • Small Methods, Vol. 1, Issue 9
    • DOI: 10.1002/smtd.201700202

    The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage
    journal, March 2018


    High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design
    journal, November 2016

    • Wu, Chao; Kopold, Peter; van Aken, Peter A.
    • Advanced Materials, Vol. 29, Issue 3
    • DOI: 10.1002/adma.201604015

    Orientation‐Dependent Intercalation Channels for Lithium and Sodium in Black Phosphorus
    journal, September 2019

    • Kim, Sungkyu; Cui, Jiang; Dravid, Vinayak P.
    • Advanced Materials, Vol. 31, Issue 46
    • DOI: 10.1002/adma.201904623

    Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe 2 Single Crystals
    journal, October 2018

    • Kim, Sungkyu; Yao, Zhenpeng; Lim, Jin-Myoung
    • Advanced Materials, Vol. 30, Issue 51
    • DOI: 10.1002/adma.201804925

    Iron-based sodium-ion full batteries
    journal, January 2016

    • Ye, Hualin; Wang, Yeyun; Zhao, Feipeng
    • Journal of Materials Chemistry A, Vol. 4, Issue 5
    • DOI: 10.1039/c5ta09867j

    Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Built‐In Electric Field
    journal, August 2019


    Statistical variances of diffusional properties from ab initio molecular dynamics simulations
    journal, April 2018


    Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
    journal, November 2019

    • Fang, Shan; Bresser, Dominic; Passerini, Stefano
    • Advanced Energy Materials, Vol. 10, Issue 1
    • DOI: 10.1002/aenm.201902485

    A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes
    journal, December 2016

    • Zhao, Yi; Wang, Luyuan Paul; Sougrati, Moulay Tahar
    • Advanced Energy Materials, Vol. 7, Issue 9
    • DOI: 10.1002/aenm.201601424

    Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca
    journal, April 2016

    • He, Yang; Gu, Meng; Xiao, Haiyan
    • Angewandte Chemie International Edition, Vol. 55, Issue 21
    • DOI: 10.1002/anie.201601542