skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex

Abstract

The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as CoI and CoIII–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)]n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)]n+ where L is the pentadentate DPA-Bpy ligand or [Co(OH₂)]n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a CoII species results in weakening the Co–O bond. The further reduction to a CoI species leads to the loss of the aqua ligand and the formation of [CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [CoI(κ⁴-L)(OH₂)]⁺ species at least transiently,more » and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the CoI species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [CoI(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.« less

Authors:
 [1];  [2];  [2];  [3];  [3];  [3]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Adam Mickiewicz Univ., Poznan (Poland)
  2. Univ. of Memphis, Memphis, TN (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1213364
Report Number(s):
BNL-108199-2015-JA
Journal ID: ISSN 0020-1669; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 9; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lewandowska-Andralojc, Anna, Baine, Teera, Zhao, Xuan, Muckerman, James T., Fujita, Etsuko, and Poyansky, Dmitry E.. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex. United States: N. p., 2015. Web. https://doi.org/10.1021/ic5031137.
Lewandowska-Andralojc, Anna, Baine, Teera, Zhao, Xuan, Muckerman, James T., Fujita, Etsuko, & Poyansky, Dmitry E.. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex. United States. https://doi.org/10.1021/ic5031137
Lewandowska-Andralojc, Anna, Baine, Teera, Zhao, Xuan, Muckerman, James T., Fujita, Etsuko, and Poyansky, Dmitry E.. Wed . "Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex". United States. https://doi.org/10.1021/ic5031137. https://www.osti.gov/servlets/purl/1213364.
@article{osti_1213364,
title = {Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex},
author = {Lewandowska-Andralojc, Anna and Baine, Teera and Zhao, Xuan and Muckerman, James T. and Fujita, Etsuko and Poyansky, Dmitry E.},
abstractNote = {The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as CoI and CoIII–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)]n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)]n+ where L is the pentadentate DPA-Bpy ligand or [Co(OH₂)]n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a CoII species results in weakening the Co–O bond. The further reduction to a CoI species leads to the loss of the aqua ligand and the formation of [CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [CoI(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the CoI species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [CoI(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.},
doi = {10.1021/ic5031137},
journal = {Inorganic Chemistry},
number = 9,
volume = 54,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Erratum: Powering the planet with solar fuel
journal, May 2009


Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Some general principles for designing electrocatalysts with hydrogenase activity
journal, August 2005


Molecular systems for light driven hydrogen production
journal, January 2012

  • Eckenhoff, William T.; Eisenberg, Richard
  • Dalton Transactions, Vol. 41, Issue 42
  • DOI: 10.1039/c2dt30823a

Hydrogen Evolution Catalyzed by Cobaloximes
journal, December 2009

  • Dempsey, Jillian L.; Brunschwig, Bruce S.; Winkler, Jay R.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900253e

Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes
journal, January 2005

  • Hu, Xile; Cossairt, Brandi M.; Brunschwig, Bruce S.
  • Chemical Communications, Issue 37
  • DOI: 10.1039/b509188h

Proton Electroreduction Catalyzed by Cobaloximes:  Functional Models for Hydrogenases
journal, June 2005

  • Razavet, Mathieu; Artero, Vincent; Fontecave, Marc
  • Inorganic Chemistry, Vol. 44, Issue 13
  • DOI: 10.1021/ic050167z

Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes
journal, July 2007

  • Hu, Xile; Brunschwig, Bruce S.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 129, Issue 29
  • DOI: 10.1021/ja067876b

A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst
journal, September 2008

  • Du, Pingwu; Knowles, Kathryn; Eisenberg, Richard
  • Journal of the American Chemical Society, Vol. 130, Issue 38
  • DOI: 10.1021/ja804650g

Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts
journal, June 2009

  • Du, Pingwu; Schneider, Jacob; Luo, Genggeng
  • Inorganic Chemistry, Vol. 48, Issue 11
  • DOI: 10.1021/ic900389z

Reductive Side of Water Splitting in Artificial Photosynthesis: New Homogeneous Photosystems of Great Activity and Mechanistic Insight
journal, November 2010

  • McCormick, Theresa M.; Calitree, Brandon D.; Orchard, Alexandra
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja1057357

Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt( ii ) polypyridyl catalysts
journal, January 2014

  • Khnayzer, R. S.; Thoi, V. S.; Nippe, M.
  • Energy Environ. Sci., Vol. 7, Issue 4
  • DOI: 10.1039/C3EE43982H

Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe
journal, January 2013

  • Nippe, Michael; Khnayzer, Rony S.; Panetier, Julien A.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51660a

Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex
journal, April 2012

  • Singh, Wangkheimayum Marjit; Baine, Teera; Kudo, Shotaro
  • Angewandte Chemie International Edition, Vol. 51, Issue 24
  • DOI: 10.1002/anie.201200082

Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water
journal, June 2011

  • Sun, Yujie; Bigi, Julian P.; Piro, Nicholas A.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja202743r

Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex
journal, March 2014

  • Tong, Lianpeng; Zong, Ruifa; Thummel, Randolph P.
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja501257d

Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes
journal, January 2013

  • Zhang, Peili; Wang, Mei; Gloaguen, Frederic
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc43491e

Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2'-bipyridine)ruthenium(II)-cobalt(II) macrocycle system
journal, February 1979

  • Brown, Gilbert M.; Brunschwig, Bruce S.; Creutz, Carol
  • Journal of the American Chemical Society, Vol. 101, Issue 5
  • DOI: 10.1021/ja00499a051

Homogeneous catalysis of the photoreduction of water by visible light. 2. Mediation by a tris(2,2'-bipyridine)ruthenium(II)-cobalt(II) bipyridine system
journal, April 1981

  • Krishnan, C. V.; Sutin, Norman
  • Journal of the American Chemical Society, Vol. 103, Issue 8
  • DOI: 10.1021/ja00398a066

Homogeneous Catalysis of the Photoreduction of Water by Visible Light. 3. Mediation by Polypyridine Complexes of Ruthenium(II) and Cobalt(II)
journal, January 1982

  • Krishnan, C. V.; Creutz, Carol; Mahajan, Devinder
  • Israel Journal of Chemistry, Vol. 22, Issue 2
  • DOI: 10.1002/ijch.198200020

An unexpected role of the monodentate ligand in photocatalytic hydrogen production of the pentadentate ligand-based cobalt complexes
journal, January 2014

  • Xie, Jingfan; Zhou, Qianxiong; Li, Chao
  • Chemical Communications, Vol. 50, Issue 49
  • DOI: 10.1039/c4cc01471e

[Ni(P Ph 2 N C6H4X 2 ) 2 ] 2+ Complexes as Electrocatalysts for H 2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates
journal, April 2011

  • Kilgore, Uriah J.; Roberts, John A. S.; Pool, Douglas H.
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja109755f

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases
journal, March 2007

  • Wilson, A. D.; Shoemaker, R. K.; Miedaner, A.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 17
  • DOI: 10.1073/pnas.0608928104

Proton management as a design principle for hydrogenase-inspired catalysts
journal, January 2011

  • Small, Yolanda A.; DuBois, Daniel L.; Fujita, Etsuko
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01170g

The role of pendant bases in molecular catalysts for H2 oxidation and production
journal, August 2008


Catalytic Hydrogen Evolution from Mononuclear Iron(II) Carbonyl Complexes as Minimal Functional Models of the [FeFe] Hydrogenase Active Site
journal, September 2010

  • Kaur-Ghumaan, Sandeep; Schwartz, Lennart; Lomoth, Reiner
  • Angewandte Chemie International Edition, Vol. 49, Issue 43
  • DOI: 10.1002/anie.201002719

Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate
journal, September 2001

  • Gloaguen, Frédéric; Lawrence, Joshua D.; Rauchfuss, Thomas B.
  • Journal of the American Chemical Society, Vol. 123, Issue 38
  • DOI: 10.1021/ja016516f

Hydrogen evolution catalyzed by MoS3 and MoS2 particles
journal, January 2012

  • Vrubel, Heron; Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02835b

A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
journal, January 2011

  • Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 4, Issue 10, 3878
  • DOI: 10.1039/c1ee01970h

A molecular molybdenum-oxo catalyst for generating hydrogen from water
journal, April 2010

  • Karunadasa, Hemamala I.; Chang, Christopher J.; Long, Jeffrey R.
  • Nature, Vol. 464, Issue 7293
  • DOI: 10.1038/nature08969

Mechanism of H 2 Evolution from a Photogenerated Hydridocobaloxime
journal, December 2010

  • Dempsey, Jillian L.; Winkler, Jay R.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 132, Issue 47
  • DOI: 10.1021/ja109351h

Molecular mechanisms of cobalt-catalyzed hydrogen evolution
journal, September 2012

  • Marinescu, S. C.; Winkler, J. R.; Gray, H. B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1213442109

Kinetics of Electron Transfer Reactions of H 2 -Evolving Cobalt Diglyoxime Catalysts
journal, January 2010

  • Dempsey, Jillian L.; Winkler, Jay R.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 132, Issue 3
  • DOI: 10.1021/ja9080259

Phosphine Coordination to a Cobalt Diimine–Dioxime Catalyst Increases Stability during Light-Driven H 2 Production
journal, January 2012

  • Zhang, Pan; Jacques, Pierre-André; Chavarot-Kerlidou, Murielle
  • Inorganic Chemistry, Vol. 51, Issue 4
  • DOI: 10.1021/ic2019132

Catalytic hydrogen evolution from a covalently linked dicobaloxime
journal, July 2012

  • Valdez, C. N.; Dempsey, J. L.; Brunschwig, B. S.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118329109

An Efficient Homogeneous Intermolecular Rhenium-Based Photocatalytic System for the Production of H 2
journal, March 2009

  • Probst, Benjamin; Kolano, Christoph; Hamm, Peter
  • Inorganic Chemistry, Vol. 48, Issue 5
  • DOI: 10.1021/ic8013255

Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles
journal, April 2014

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic5002896

Theoretical Analysis of Mechanistic Pathways for Hydrogen Evolution Catalyzed by Cobaloximes
journal, November 2011

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic201842v

Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime
journal, January 2011

  • Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 47, Issue 46
  • DOI: 10.1039/c1cc15330g

Voltammetric and spectroscopic characterization of early intermediates in the Co(ii)–polypyridyl-catalyzed reduction of water
journal, January 2013

  • Singh, Wangkheimayum Marjit; Mirmohades, Mohammad; Jane, Reuben T.
  • Chemical Communications, Vol. 49, Issue 77
  • DOI: 10.1039/c3cc44655g

Mechanism of Photocatalytic Hydrogen Generation by a Polypyridyl-Based Cobalt Catalyst in Aqueous Solution
journal, December 2014

  • Rodenberg, Alexander; Orazietti, Margherita; Probst, Benjamin
  • Inorganic Chemistry, Vol. 54, Issue 2
  • DOI: 10.1021/ic502591a

Photocatalytic H 2 Production from Water with Rhenium and Cobalt Complexes
journal, April 2011

  • Probst, Benjamin; Guttentag, Miguel; Rodenberg, Alexander
  • Inorganic Chemistry, Vol. 50, Issue 8
  • DOI: 10.1021/ic102317u

3d Element Complexes of Pentadentate Bipyridine-Pyridine-Based Ligand Scaffolds: Structures and Photocatalytic Activities
journal, April 2013

  • Bachmann, Cyril; Guttentag, Miguel; Spingler, Bernhard
  • Inorganic Chemistry, Vol. 52, Issue 10
  • DOI: 10.1021/ic4004017

Electronic Effects on a Mononuclear Co Complex with a Pentadentate Ligand for Catalytic H 2 Evolution
journal, September 2014

  • Vennampalli, Manohar; Liang, Guangchao; Katta, Lakshmi
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic500840e

Photoinduced hydrogen evolution by a pentapyridine cobalt complex: elucidating some mechanistic aspects
journal, January 2014

  • Deponti, Elisa; Luisa, Alessandra; Natali, Mirco
  • Dalton Trans., Vol. 43, Issue 43
  • DOI: 10.1039/C4DT02269F

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
journal, August 1980

  • Vosko, S. H.; Wilk, L.; Nusair, M.
  • Canadian Journal of Physics, Vol. 58, Issue 8
  • DOI: 10.1139/p80-159

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
journal, October 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 40
  • DOI: 10.1021/jp982638r

Comment on “Accurate Experimental Values for the Free Energies of Hydration of H + , OH - , and H 3 O +
journal, December 2005

  • Camaioni, Donald M.; Schwerdtfeger, Christine A.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 47
  • DOI: 10.1021/jp054088k

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models
journal, August 2008

  • Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; Goddard III, William A.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 32
  • DOI: 10.1021/jp802665d

Thermodynamics of the Electron and the Proton
journal, June 1994

  • Bartmess, John E.
  • The Journal of Physical Chemistry, Vol. 98, Issue 25
  • DOI: 10.1021/j100076a029

Mechanism of Hydride Donor Generation Using a Ru(II) Complex Containing an NAD + Model Ligand: Pulse and Steady-State Radiolysis Studies
journal, May 2008

  • Polyansky, Dmitry E.; Cabelli, Diane; Muckerman, James T.
  • Inorganic Chemistry, Vol. 47, Issue 10
  • DOI: 10.1021/ic702139n

Hydrogen Atom Reactivity toward Aqueous tert -Butyl Alcohol
journal, January 2012

  • Lymar, Sergei V.; Schwarz, Harold A.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 5
  • DOI: 10.1021/jp2116593

Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution
journal, April 1991

  • Creutz, Carol; Schwarz, Harold A.; Wishart, James F.
  • Journal of the American Chemical Society, Vol. 113, Issue 9
  • DOI: 10.1021/ja00009a022

Free radical route to formation of the metal hydride complex hydridoaquobis(2,2'-bipyridine)cobalt(III)
journal, May 1984

  • Creutz, Carol; Schwarz, Harold A.; Sutin, Norman
  • Journal of the American Chemical Society, Vol. 106, Issue 10
  • DOI: 10.1021/ja00322a051

A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides
journal, October 1979

  • Reeve, Wilkins; Erikson, Charles M.; Aluotto, Patrick F.
  • Canadian Journal of Chemistry, Vol. 57, Issue 20
  • DOI: 10.1139/v79-444

The reactivity of cobalt(I) complexes containing unsaturated macrocyclic ligands in aqueous solution
journal, January 1976

  • Tait, A. Martin; Hoffman, Morton Z.; Hayon, E.
  • Journal of the American Chemical Society, Vol. 98, Issue 1
  • DOI: 10.1021/ja00417a015

Mechanistic Information from Pressure Acceleration of Hydride Formation via Proton Binding to a Cobalt(I) Macrocycle
journal, March 2002

  • Fujita, Etsuko; Wishart, James F.; van Eldik, Rudi
  • Inorganic Chemistry, Vol. 41, Issue 6
  • DOI: 10.1021/ic011109q

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

A mechanistic study of proton reduction catalyzed by a pentapyridine cobalt complex: evidence for involvement of an anation-based pathway
journal, January 2013

  • King, Amanda E.; Surendranath, Yogesh; Piro, Nicholas A.
  • Chemical Science, Vol. 4, Issue 4
  • DOI: 10.1039/c3sc22239j

Quantum chemical calculations of the reorganization energy of blue-copper proteins
journal, December 1998

  • Olsson, Mats H. M.; Ryde, Ulf; Roos, Björn O.
  • Protein Science, Vol. 7, Issue 12
  • DOI: 10.1002/pro.5560071220

    Works referencing / citing this record:

    Synthesis of a pentadentate, polypyrazine ligand and its application in cobalt-catalyzed hydrogen production
    journal, January 2017

    • Chen, Lizhu; Khadivi, Amir; Singh, Manpreet
    • Inorganic Chemistry Frontiers, Vol. 4, Issue 10
    • DOI: 10.1039/c7qi00362e

    Understanding light-driven H 2 evolution through the electronic tuning of aminopyridine cobalt complexes
    journal, January 2018

    • Call, Arnau; Franco, Federico; Kandoth, Noufal
    • Chemical Science, Vol. 9, Issue 9
    • DOI: 10.1039/c7sc04328g

    μ-Pyridine-bridged copper complex with robust proton-reducing ability
    journal, January 2017

    • Majee, Karunamay; Patel, Jully; Das, Babulal
    • Dalton Transactions, Vol. 46, Issue 43
    • DOI: 10.1039/c7dt03153j

    Insights into the mechanism of photosynthetic H 2 evolution catalyzed by a heptacoordinate cobalt complex
    journal, January 2020

    • Lucarini, Fiorella; Fize, Jennifer; Morozan, Adina
    • Sustainable Energy & Fuels, Vol. 4, Issue 2
    • DOI: 10.1039/c9se00434c

    Design and photophysical studies of iridium( iii )–cobalt( iii ) dyads and their application for dihydrogen photo-evolution
    journal, January 2019

    • Lentz, Cédric; Schott, Olivier; Auvray, Thomas
    • Dalton Transactions, Vol. 48, Issue 41
    • DOI: 10.1039/c9dt01989h

    Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts
    journal, May 2017

    • Lee, Katherine J.; Elgrishi, Noémie; Kandemir, Banu
    • Nature Reviews Chemistry, Vol. 1, Issue 5
    • DOI: 10.1038/s41570-017-0039

    A Smorgasbord of 17 Cobalt Complexes Active for Photocatalytic Hydrogen Evolution
    journal, June 2018

    • Hogue, Ross W.; Schott, Olivier; Hanan, Garry S.
    • Chemistry - A European Journal, Vol. 24, Issue 39
    • DOI: 10.1002/chem.201800396

    Ligand dechelation effect on a [Co(tpy) 2 ] 2+ scaffold towards electro-catalytic proton and water reduction
    journal, January 2019

    • Majee, Karunamay; Padhi, Sumanta Kumar
    • New Journal of Chemistry, Vol. 43, Issue 9
    • DOI: 10.1039/c8nj05712e

    Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media
    journal, January 2017

    • Call, Arnau; Casadevall, Carla; Acuña-Parés, Ferran
    • Chemical Science, Vol. 8, Issue 7
    • DOI: 10.1039/c7sc01276d

    Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen
    journal, January 2019

    • Child, Simon N.; Raychev, Radoslav; Moss, Nathan
    • Dalton Transactions, Vol. 48, Issue 26
    • DOI: 10.1039/c9dt00773c

    Photocatalytic hydrogen evolution with ruthenium polypyridine sensitizers: unveiling the key factors to improve efficiencies
    journal, January 2016

    • Deponti, Elisa; Natali, Mirco
    • Dalton Transactions, Vol. 45, Issue 22
    • DOI: 10.1039/c6dt01221c