DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From deep TLS validation to ensembles of atomic models built from elemental motions

Abstract

The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.

Authors:
 [1];  [2];  [3];  [3];  [4]
  1. CNRS–INSERM–UdS, Illkirch (France). Centre for Integrative Biology; Universite´ de Lorraine, Nancy (France). Faculte des Sciences et Technolgoies
  2. Lawrence Berkeley National Lab., Berkeley, CA (United States). Physical Biosciences Div
  3. Univ. of California, San Francisco, CA (United States). Dept. of Bioengineering and Therapeutic Sciences
  4. Lawrence Berkeley National Lab., Berkeley, CA (United States). Physical Biosciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1213057
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Acta Crystallographica. Section D: Biological Crystallography (Online)
Additional Journal Information:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography (Online); Journal Volume: 71; Journal Issue: 8; Journal ID: ISSN 1399-0047
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; TLS model; TLS matrices; model validation; molecular mobility; ensemble of models; diffuse scattering; libration; vibration; correlated motion

Citation Formats

Urzhumtsev, Alexandre, Afonine, Pavel V., Van Benschoten, Andrew H., Fraser, James S., and Adams, Paul D. From deep TLS validation to ensembles of atomic models built from elemental motions. United States: N. p., 2015. Web. doi:10.1107/S1399004715011426.
Urzhumtsev, Alexandre, Afonine, Pavel V., Van Benschoten, Andrew H., Fraser, James S., & Adams, Paul D. From deep TLS validation to ensembles of atomic models built from elemental motions. United States. https://doi.org/10.1107/S1399004715011426
Urzhumtsev, Alexandre, Afonine, Pavel V., Van Benschoten, Andrew H., Fraser, James S., and Adams, Paul D. Tue . "From deep TLS validation to ensembles of atomic models built from elemental motions". United States. https://doi.org/10.1107/S1399004715011426. https://www.osti.gov/servlets/purl/1213057.
@article{osti_1213057,
title = {From deep TLS validation to ensembles of atomic models built from elemental motions},
author = {Urzhumtsev, Alexandre and Afonine, Pavel V. and Van Benschoten, Andrew H. and Fraser, James S. and Adams, Paul D.},
abstractNote = {The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.},
doi = {10.1107/S1399004715011426},
journal = {Acta Crystallographica. Section D: Biological Crystallography (Online)},
number = 8,
volume = 71,
place = {United States},
year = {Tue Jul 28 00:00:00 EDT 2015},
month = {Tue Jul 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exploring the Structural Dynamics of the E.coli Chaperonin GroEL Using Translation-libration-screw Crystallographic Refinement of Intermediate States
journal, September 2004

  • Chaudhry, Charu; Horwich, Arthur L.; Brunger, Axel T.
  • Journal of Molecular Biology, Vol. 342, Issue 1
  • DOI: 10.1016/j.jmb.2004.07.015

The analysis of the anisotropic thermal motion of molecules in crystals
journal, September 1956


Conformational flexibility in T4 endonuclease VII revealed by crystallography: implications for substrate binding and cleavage1 1Edited by K. Morikawa
journal, April 2001

  • Raaijmakers, Hans; Törö, Imre; Birkenbihl, Rainer
  • Journal of Molecular Biology, Vol. 308, Issue 2
  • DOI: 10.1006/jmbi.2001.4592

Correlation of Internal Torsional Motion with Overall Molecular Motion in Crystals
journal, October 1998

  • Schomaker, V.; Trueblood, K. N.
  • Acta Crystallographica Section B Structural Science, Vol. 54, Issue 5
  • DOI: 10.1107/S0108768198003243

Refinement of the arginine kinase transition-state analogue complex at 1.2 Å resolution: mechanistic insights
journal, November 2002

  • Yousef, Mohammad S.; Fabiola, Felcy; Gattis, James L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 58, Issue 12
  • DOI: 10.1107/S0907444902014683

The Structure and Function of a Novel Glycerophosphodiesterase from Enterobacter aerogenes
journal, April 2007

  • Jackson, Colin J.; Carr, Paul D.; Liu, Jian-Wei
  • Journal of Molecular Biology, Vol. 367, Issue 4
  • DOI: 10.1016/j.jmb.2007.01.032

TLSANL : TLS parameter-analysis program for segmented anisotropic refinement of macromolecular structures
journal, August 1993


Domain flexibility in aspartic proteinases
journal, February 1992

  • Šali, Andrej; Veerapandian, B.; Cooper, Jon B.
  • Proteins: Structure, Function, and Genetics, Vol. 12, Issue 2
  • DOI: 10.1002/prot.340120209

Description of overall anisotropy in diffraction from macromolecular crystals
journal, January 1987

  • Sheriff, S.; Hendrickson, W. A.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 43, Issue 1
  • DOI: 10.1107/S010876738709977X

Use of TLS parameters to model anisotropic displacements in macromolecular refinement
journal, January 2001

  • Winn, M. D.; Isupov, M. N.; Murshudov, G. N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 57, Issue 1
  • DOI: 10.1107/S0907444900014736

Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape
journal, March 1967


Bulk-solvent and overall scaling revisited: faster calculations, improved results
journal, March 2013

  • Afonine, P. V.; Grosse-Kunstleve, R. W.; Adams, P. D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 4
  • DOI: 10.1107/S0907444913000462

TLS from fundamentals to practice
journal, October 2013


Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms
journal, April 2013

  • Simonetti, Angelita; Marzi, Stefano; Fabbretti, Attilio
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 6
  • DOI: 10.1107/S0907444913006422

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

TLSMD web server for the generation of multi-group TLS models
journal, January 2006


A molecular viewer for the analysis of TLS rigid-body motion in macromolecules
journal, March 2005

  • Painter, Jay; Merritt, Ethan A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 61, Issue 4
  • DOI: 10.1107/S0907444905001897

The Computational Crystallography Toolbox : crystallographic algorithms in a reusable software framework
journal, January 2002

  • Grosse-Kunstleve, Ralf W.; Sauter, Nicholas K.; Moriarty, Nigel W.
  • Journal of Applied Crystallography, Vol. 35, Issue 1
  • DOI: 10.1107/S0021889801017824

The segmented anisotropic refinement of monoclinic papain by the application of the rigid-body TLS model and comparison to bovine ribonuclease A
journal, February 1992

  • Harris, G. W.; Pickersgill, R. W.; Howlin, B.
  • Acta Crystallographica Section B Structural Science, Vol. 48, Issue 1
  • DOI: 10.1107/S0108768191006663

Refinement at atomic resolution
book, April 2012


Rigid protein motion as a model for crystallographic temperature factors.
journal, April 1991

  • Kuriyan, J.; Weis, W. I.
  • Proceedings of the National Academy of Sciences, Vol. 88, Issue 7
  • DOI: 10.1073/pnas.88.7.2773

Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
journal, March 2006

  • Painter, Jay; Merritt, Ethan A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 4
  • DOI: 10.1107/S0907444906005270

The Protein Data Bank
journal, January 2000


Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III: Implications for Ca
journal, November 1999

  • Sutton, R. Bryan; Ernst, James A.; Brunger, Axel T.
  • The Journal of Cell Biology, Vol. 147, Issue 3
  • DOI: 10.1083/jcb.147.3.589

A lattice-dynamical interpretation of molecular rigid-body vibration tensors
journal, September 1973


On the rigid-body motion of molecules in crystals
journal, January 1968

  • Schomaker, V.; Trueblood, K. N.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 24, Issue 1
  • DOI: 10.1107/S0567740868001718

The protein data bank: A computer-based archival file for macromolecular structures
journal, May 1977

  • Bernstein, Frances C.; Koetzle, Thomas F.; Williams, Graheme J. B.
  • Journal of Molecular Biology, Vol. 112, Issue 3
  • DOI: 10.1016/S0022-2836(77)80200-3

Dynamics of folded proteins
journal, June 1977

  • McCammon, J. Andrew; Gelin, Bruce R.; Karplus, Martin
  • Nature, Vol. 267, Issue 5612
  • DOI: 10.1038/267585a0

Intersubunit Bridge Formation Governs Agonist Efficacy at Nicotinic Acetylcholine α4β2 Receptors: UNIQUE ROLE OF HALOGEN BONDING REVEALED
journal, December 2011

  • Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech
  • Journal of Biological Chemistry, Vol. 287, Issue 6
  • DOI: 10.1074/jbc.M111.292243

The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity
journal, September 2000

  • Wilson, Mark A.; Brunger, Axel T.
  • Journal of Molecular Biology, Vol. 301, Issue 5
  • DOI: 10.1006/jmbi.2000.4029

The structure factor
book, October 2006


Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model
journal, December 1989

  • Howlin, B.; Moss, D. S.; Harris, G. W.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 45, Issue 12
  • DOI: 10.1107/S0108767389009177

Works referencing / citing this record:

Measuring and modeling diffuse scattering in protein X-ray crystallography
journal, March 2016

  • Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1524048113

From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation
journal, June 2018

  • Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre
  • Acta Crystallographica Section D Structural Biology, Vol. 74, Issue 7
  • DOI: 10.1107/s2059798318005764