skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

Abstract

The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li 1.2Ni 0.2Mn 0.6O 2 and spinel LiNi 0.5Mn 1.5O 4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li 1.2Ni 0.2Mn 0.6O 2 is shown to have Li-rich Li 2MO 3 phase regions and Li-depleted Li(Ni 0.5Mn 0.5)O 2 regions while in the cycled layered Li 1.2Ni 0.2Mn 0.6O 2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi 0.5Mn 1.5O 4 cathode is shown to have a uniform distribution of all cations. These results weremore » additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [4];  [4];  [5]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. FEI Company, Hillsboro, OR (United States)
  3. Qatar Environment and Energy Research Institute, Doha (Qatar)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qatar Environment and Energy Research Institute, Doha (Qatar)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1212997
Alternate Identifier(s):
OSTI ID: 1224906
Report Number(s):
PNNL-SA-111262
Journal ID: ISSN 2041-1723; 48658
Grant/Contract Number:  
AC05-76RL01830; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal Issue: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; Environmental Molecular Sciences Laboratory; chemical sciences; materials science; nanotechnology

Citation Formats

Devaraj, Arun, Gu, Meng, Colby, Robert J., Yan, Pengfei, Wang, Chong M., Zheng, Jianming, Xiao, Jie, Genc, Arda, Zhang, Jiguang, Belharouak, Ilias, Wang, Dapeng, Amine, Khalil, and Thevuthasan, Suntharampillai. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. United States: N. p., 2015. Web. doi:10.1038/ncomms9014.
Devaraj, Arun, Gu, Meng, Colby, Robert J., Yan, Pengfei, Wang, Chong M., Zheng, Jianming, Xiao, Jie, Genc, Arda, Zhang, Jiguang, Belharouak, Ilias, Wang, Dapeng, Amine, Khalil, & Thevuthasan, Suntharampillai. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. United States. doi:10.1038/ncomms9014.
Devaraj, Arun, Gu, Meng, Colby, Robert J., Yan, Pengfei, Wang, Chong M., Zheng, Jianming, Xiao, Jie, Genc, Arda, Zhang, Jiguang, Belharouak, Ilias, Wang, Dapeng, Amine, Khalil, and Thevuthasan, Suntharampillai. Fri . "Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes". United States. doi:10.1038/ncomms9014. https://www.osti.gov/servlets/purl/1212997.
@article{osti_1212997,
title = {Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes},
author = {Devaraj, Arun and Gu, Meng and Colby, Robert J. and Yan, Pengfei and Wang, Chong M. and Zheng, Jianming and Xiao, Jie and Genc, Arda and Zhang, Jiguang and Belharouak, Ilias and Wang, Dapeng and Amine, Khalil and Thevuthasan, Suntharampillai},
abstractNote = {The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.},
doi = {10.1038/ncomms9014},
journal = {Nature Communications},
number = 7,
volume = 6,
place = {United States},
year = {2015},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Next-generation lithium-ion batteries: The promise of near-term advancements
journal, May 2014

  • Croy, Jason R.; Abouimrane, Ali; Zhang, Zhengcheng
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.84

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Positive Electrode Materials for Li-Ion and Li-Batteries
journal, February 2010

  • Ellis, Brian L.; Lee, Kyu Tae; Nazar, Linda F.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902696j

Electrochemical and Structural Properties of xLi2M‘O3 ·(1− x )LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3)
journal, May 2004

  • Kim, Jeom-Soo; Johnson, Christopher S.; Vaughey, John T.
  • Chemistry of Materials, Vol. 16, Issue 10, p. 1996-2006
  • DOI: 10.1021/cm0306461

XEDS STEM tomography for 3D chemical characterization of nanoscale particles
journal, August 2013


Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
journal, September 2012

  • Gu, Meng; Belharouak, Ilias; Genc, Arda
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302249v

Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li 1.2 Ni 0.2 Mn 0.6 O 2 for Li-Ion Batteries
journal, May 2013

  • Gu, Meng; Genc, Arda; Belharouak, Ilias
  • Chemistry of Materials, Vol. 25, Issue 11
  • DOI: 10.1021/cm4009392

Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery
journal, January 2010

  • Hong, Jihyun; Seo, Dong-Hwa; Kim, Sung-Wook
  • Journal of Materials Chemistry, Vol. 20, Issue 45
  • DOI: 10.1039/c0jm01971b

Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy
journal, March 2008


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

High-Performance LiNi 0.5 Mn 1.5 O 4 Spinel Controlled by Mn 3+ Concentration and Site Disorder
journal, March 2012


A New, Safe, High-Rate and High-Energy Polymer Lithium-Ion Battery
journal, August 2009

  • Hassoun, Jusef; Panero, Stefania; Reale, Priscilla
  • Advanced Materials, Vol. 21, Issue 47
  • DOI: 10.1002/adma.200900470

High-Power Nanostructured LiMn 2 - x Ni x O 4 High-Voltage Lithium-Ion Battery Electrode Materials:  Electrochemical Impact of Electronic Conductivity and Morphology
journal, July 2006

  • Kunduraci, Muharrem; Al-Sharab, Jafar F.; Amatucci, Glenn G.
  • Chemistry of Materials, Vol. 18, Issue 15
  • DOI: 10.1021/cm060729s

Revealing the coupled cation interactions behind the electrochemical profile of LixNi0.5Mn1.5O4
journal, January 2012

  • Lee, Eunseok; Persson, Kristin A.
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03068c

Comparative Study of LiNi 0.5 Mn 1.5 O 4 - δ and LiNi 0.5 Mn 1.5 O 4 Cathodes Having Two Crystallographic Structures:  Fdm and P 4 3 32
journal, March 2004

  • Kim, J. -H.; Myung, S. -T.; Yoon, C. S.
  • Chemistry of Materials, Vol. 16, Issue 5
  • DOI: 10.1021/cm035050s

A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”
journal, June 2011


High voltage nickel manganese spinel oxides for Li-ion batteries
journal, May 2008


Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder
journal, January 2012

  • Zheng, Jianming; Xiao, Jie; Yu, Xiqian
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 39
  • DOI: 10.1039/c2cp43007j

Atomic resolution of lithium ions in LiCoO2
journal, June 2003

  • Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude
  • Nature Materials, Vol. 2, Issue 7
  • DOI: 10.1038/nmat922

Atomic-Scale Visualization of Antisite Defects in LiFePO 4
journal, March 2008


Role of Photoexcitation and Field Ionization in the Measurement of Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography
journal, March 2013

  • Devaraj, A.; Colby, R.; Hess, W. P.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz400015h

The second revolution in atom probe tomography
journal, February 2012

  • Kelly, Thomas F.; Larson, David J.
  • MRS Bulletin, Vol. 37, Issue 2
  • DOI: 10.1557/mrs.2012.3

Atom probe tomography
journal, March 2007

  • Kelly, Thomas F.; Miller, Michael K.
  • Review of Scientific Instruments, Vol. 78, Issue 3
  • DOI: 10.1063/1.2709758

Atom Probe Tomography of Electronic Materials
journal, August 2007


Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO
journal, February 2013


Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation
journal, March 2014

  • Devaraj, Arun; Colby, Robert; Vurpillot, François
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 8
  • DOI: 10.1021/jz500259c

Atom probe tomography of lithium-doped network glasses
journal, June 2014


Interfacial morphology development and solute trapping behavior during rapid solidification of an Al–Li–Cu alloy
journal, March 2013


Creep properties and precipitate evolution in Al–Li alloys microalloyed with Sc and Yb
journal, July 2012

  • Krug, Matthew E.; Seidman, David N.; Dunand, David C.
  • Materials Science and Engineering: A, Vol. 550
  • DOI: 10.1016/j.msea.2012.04.075

Atom probe microscopy investigation of Mg site occupancy within δ′ precipitates in an Al–Mg–Li alloy
journal, June 2012


Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy
journal, March 2012


Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (at.%)
journal, May 2011


Effects of Li additions on precipitation-strengthened Al–Sc and Al–Sc–Yb alloys
journal, February 2011


Quantitative Analysis of Precipitate Compositions in an Al-Li-Mg-Cu Alloy Using Atom Probe Tomography
journal, June 2010


Composition profiles within Al3Li and Al3Sc∕Al3Li nanoscale precipitates in aluminum
journal, March 2008

  • Krug, Matthew E.; Dunand, David C.; Seidman, David N.
  • Applied Physics Letters, Vol. 92, Issue 12
  • DOI: 10.1063/1.2901150

Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography
journal, January 2015


Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO 2
journal, January 2014

  • Diercks, David R.; Musselman, Matthew; Morgenstern, Amanda
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0071411jes

Quantitative binomial distribution analyses of nanoscale like‐solute atom clustering and segregation in atom probe tomography data
journal, July 2008

  • Moody, Michael P.; Stephenson, Leigh T.; Ceguerra, Anna V.
  • Microscopy Research and Technique, Vol. 71, Issue 7
  • DOI: 10.1002/jemt.20582

Contingency table techniques for three dimensional atom probe tomography
journal, January 2007

  • Moody, Michael P.; Stephenson, Leigh T.; Liddicoat, Peter V.
  • Microscopy Research and Technique, Vol. 70, Issue 3
  • DOI: 10.1002/jemt.20412

Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation
journal, November 2014

  • Devaraj, A.; Kaspar, T. C.; Ramanan, S.
  • Journal of Applied Physics, Vol. 116, Issue 19
  • DOI: 10.1063/1.4901465

Probing the Degradation Mechanism of Li 2 MnO 3 Cathode for Li-Ion Batteries
journal, January 2015

  • Yan, Pengfei; Xiao, Liang; Zheng, Jianming
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504257m

Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
journal, April 2014

  • Zheng, Jianming; Gu, Meng; Genc, Arda
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500486y

Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes
journal, January 2011

  • Wang, Dapeng; Belharouak, Ilias; Koenig, Gary M.
  • Journal of Materials Chemistry, Vol. 21, Issue 25
  • DOI: 10.1039/c1jm11077b