skip to main content


Title: Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.
 [1] ;  [1] ;  [2]
  1. Auburn Univ., AL (United States). NSF-CAVE3 Electronics Research Center, Dept. of Mechanical Engineering
  2. RTI International, Durham, NC (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
IEEE Access
Additional Journal Information:
Journal Volume: 3; Journal ID: ISSN 2169-3536
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States); RTI International, Research Triangle Park, NC (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
Country of Publication:
United States
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Electrolytic capacitor; solid-state lighting; LED
OSTI Identifier: