skip to main content


Title: Performance of low smeared density sodium-cooled fast reactor metal fuel

An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodiummore » indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less
 [1] ; ;  [1] ;  [1] ;  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0022-3115
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 465; Journal ID: ISSN 0022-3115
Research Org:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; fast reactor fuel; low smeared density fuel
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1432109