DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

Abstract

In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$$-$$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.

Authors:
 [1];  [2];  [2];  [2];  [3];  [2];  [2];  [2]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
  3. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
UNC partners with University of North Carolina (lead); Duke University; University of Florida; Georgia Institute of Technology; University; North Carolina Central University; Research Triangle Institute
OSTI Identifier:
1210509
Grant/Contract Number:  
SC0001011; CHE-0957215
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 16; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); solar (photovoltaic); solar (fuels); photosynthesis (natural and artificial); hydrogen and fuel cells; electrodes - solar, charge transport; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly); Ru polypyridyl complexes; electrocatalysis; solar energy; water oxidation catalysis; water splitting

Citation Formats

Song, Na, Concepcion, Javier J., Binstead, Robert A., Rudd, Jennifer A., Vannucci, Aaron K., Dares, Christopher J., Coggins, Michael K., and Meyer, Thomas J. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex. United States: N. p., 2015. Web. doi:10.1073/pnas.1500245112.
Song, Na, Concepcion, Javier J., Binstead, Robert A., Rudd, Jennifer A., Vannucci, Aaron K., Dares, Christopher J., Coggins, Michael K., & Meyer, Thomas J. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex. United States. https://doi.org/10.1073/pnas.1500245112
Song, Na, Concepcion, Javier J., Binstead, Robert A., Rudd, Jennifer A., Vannucci, Aaron K., Dares, Christopher J., Coggins, Michael K., and Meyer, Thomas J. Mon . "Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex". United States. https://doi.org/10.1073/pnas.1500245112. https://www.osti.gov/servlets/purl/1210509.
@article{osti_1210509,
title = {Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex},
author = {Song, Na and Concepcion, Javier J. and Binstead, Robert A. and Rudd, Jennifer A. and Vannucci, Aaron K. and Dares, Christopher J. and Coggins, Michael K. and Meyer, Thomas J.},
abstractNote = {In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$-$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.},
doi = {10.1073/pnas.1500245112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 16,
volume = 112,
place = {United States},
year = {Mon Apr 06 00:00:00 EDT 2015},
month = {Mon Apr 06 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes
journal, July 2013

  • Hintermair, Ulrich; Sheehan, Stafford W.; Parent, Alexander R.
  • Journal of the American Chemical Society, Vol. 135, Issue 29
  • DOI: 10.1021/ja4048762

Proton-Coupled Electron Transfer
journal, April 2012

  • Weinberg, David R.; Gagliardi, Christopher J.; Hull, Jonathan F.
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200177j

A Ru(II) Bis-terpyridine-like Complex that Catalyzes Water Oxidation: The Influence of Steric Strain
journal, August 2013

  • Kaveevivitchai, Nattawut; Kohler, Lars; Zong, Ruifa
  • Inorganic Chemistry, Vol. 52, Issue 18
  • DOI: 10.1021/ic4016383

Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes
journal, January 2014

  • Angeles-Boza, Alfredo M.; Ertem, Mehmed Z.; Sarma, Rupam
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/c3sc51919h

Divide and conquer
journal, April 2013


Proton-Coupled Electron Transfer
journal, November 2007

  • Huynh, My Hang V.; Meyer, Thomas J.
  • Chemical Reviews, Vol. 107, Issue 11
  • DOI: 10.1021/cr0500030

Concerted O atom-proton transfer in the O--O bond forming step in water oxidation
journal, April 2010

  • Chen, Z.; Concepcion, J. J.; Hu, X.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 16, p. 7225-7229
  • DOI: 10.1073/pnas.1001132107

Theoretical study of catalytic mechanism for single-site water oxidation process
journal, May 2012

  • Lin, X.; Hu, X.; Concepcion, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118344109

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer
journal, May 2010

  • Jurss, Jonah W.; Concepcion, Javier C.; Norris, Michael R.
  • Inorganic Chemistry, Vol. 49, Issue 9
  • DOI: 10.1021/ic100469x

Proton-Coupled Electron Transfers: pH-Dependent Driving Forces? Fundamentals and Artifacts
journal, September 2013

  • Bonin, Julien; Costentin, Cyrille; Robert, Marc
  • Journal of the American Chemical Society, Vol. 135, Issue 38
  • DOI: 10.1021/ja406712c

Ligand Exchange and Spin State Equilibria of Fe II (N4Py) and Related Complexes in Aqueous Media
journal, December 2011

  • Draksharapu, Apparao; Li, Qian; Logtenberg, Hella
  • Inorganic Chemistry, Vol. 51, Issue 2
  • DOI: 10.1021/ic201879b

Structure–Property Relationships in Phosphonate-Derivatized, Ru II Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment
journal, July 2012

  • Hanson, Kenneth; Brennaman, M. Kyle; Ito, Akitaka
  • The Journal of Physical Chemistry C, Vol. 116, Issue 28
  • DOI: 10.1021/jp304088d

Electrocatalysts for O2 reduction
journal, November 1984


One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH 2 )] 2+ and [Ru(tpy)(bpz)(OH 2 )] 2+
journal, December 2008

  • Concepcion, Javier J.; Jurss, Jonah W.; Templeton, Joseph L.
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja8059649

Electrocatalytic Oxidation of Tyrosine by Parallel Rate-Limiting Proton Transfer and Multisite Electron−Proton Transfer
journal, August 2006

  • Fecenko, Christine J.; Meyer, Thomas J.; Thorp, H. Holden
  • Journal of the American Chemical Society, Vol. 128, Issue 34
  • DOI: 10.1021/ja061931z

Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base
journal, September 2013

  • Wang, D.; Groves, J. T.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 39
  • DOI: 10.1073/pnas.1315383110

Catalytic water oxidation on derivatized nanoITO
journal, January 2010

  • Chen, Zuofeng; Concepcion, Javier J.; Hull, Jonathan F.
  • Dalton Transactions, Vol. 39, Issue 30
  • DOI: 10.1039/c0dt00362j

Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities
journal, June 2013

  • Duan, Lele; Wang, Lei; Inge, A. Ken
  • Inorganic Chemistry, Vol. 52, Issue 14
  • DOI: 10.1021/ic302687d

The role of proton coupled electron transfer in water oxidation
journal, January 2012

  • Gagliardi, Christopher J.; Vannucci, Aaron K.; Concepcion, Javier J.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee03311a

Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
journal, February 2010

  • Concepcion, Javier J.; Tsai, Ming-Kang; Muckerman, James T.
  • Journal of the American Chemical Society, Vol. 132, Issue 5, p. 1545-1557
  • DOI: 10.1021/ja904906v

Surface Activation of Electrocatalysis at Oxide Electrodes. Concerted Electron−Proton Transfer
journal, March 2011

  • Gagliardi, Christopher J.; Jurss, Jonah W.; Thorp, H. Holden
  • Inorganic Chemistry, Vol. 50, Issue 6
  • DOI: 10.1021/ic102524f

Structural Modifications of Mononuclear Ruthenium Complexes:  A Combined Experimental and Theoretical Study on the Kinetics of Ruthenium-Catalyzed Water Oxidation
journal, December 2010

  • Tong, Lianpeng; Duan, Lele; Xu, Yunhua
  • Angewandte Chemie International Edition, Vol. 50, Issue 2
  • DOI: 10.1002/anie.201005141

Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation
journal, November 2013

  • Vannucci, A. K.; Alibabaei, L.; Losego, M. D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 52
  • DOI: 10.1073/pnas.1319832110

A soluble copper–bipyridine water-oxidation electrocatalyst
journal, May 2012

  • Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.
  • Nature Chemistry, Vol. 4, Issue 6
  • DOI: 10.1038/nchem.1350

Fast Water Oxidation Using Iron
journal, August 2010

  • Ellis, W. Chadwick; McDaniel, Neal D.; Bernhard, Stefan
  • Journal of the American Chemical Society, Vol. 132, Issue 32
  • DOI: 10.1021/ja104766z

Water Oxidation with Mononuclear Ruthenium(II) Polypyridine Complexes Involving a Direct Ru IV ═O Pathway in Neutral and Alkaline Media
journal, July 2013

  • Badiei, Yosra M.; Polyansky, Dmitry E.; Muckerman, James T.
  • Inorganic Chemistry, Vol. 52, Issue 15
  • DOI: 10.1021/ic401023w

New Powerful and Oxidatively Rugged Dinuclear Ru Water Oxidation Catalyst: Control of Mechanistic Pathways by Tailored Ligand Design
journal, December 2013

  • Neudeck, Sven; Maji, Somnath; López, Isidoro
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja409974b

Catalytic Mechanism of Water Oxidation with Single-Site Ruthenium–Heteropolytungstate Complexes
journal, August 2011

  • Murakami, Masato; Hong, Dachao; Suenobu, Tomoyoshi
  • Journal of the American Chemical Society, Vol. 133, Issue 30
  • DOI: 10.1021/ja2024965

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Highly efficient and robust molecular ruthenium catalysts for water oxidation
journal, July 2012

  • Duan, L.; Araujo, C. M.; Ahlquist, M. S. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118347109

Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts
journal, March 2010

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Koivisto, Bryan D.
  • Inorganic Chemistry, Vol. 49, Issue 5
  • DOI: 10.1021/ic902024s

Homogeneous water oxidation catalysts containing a single metal site
journal, January 2013

  • Wasylenko, Derek J.; Palmer, Ryan D.; Berlinguette, Curtis P.
  • Chem. Commun., Vol. 49, Issue 3
  • DOI: 10.1039/C2CC35632E

Rapid catalyticwateroxidation by a single site, Rucarbenecatalyst
journal, January 2011

  • Chen, Zuofeng; Concepcion, Javier J.; Meyer, Thomas J.
  • Dalton Trans., Vol. 40, Issue 15
  • DOI: 10.1039/C0DT01178A

Works referencing / citing this record:

Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters
journal, January 2020

  • Yang, Jing; Liu, Bin; Duan, Lele
  • Dalton Transactions, Vol. 49, Issue 14
  • DOI: 10.1039/c9dt04693c

Mono‐/Multinuclear Water Oxidation Catalysts
journal, June 2019


Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting
journal, January 2018

  • Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong
  • Dalton Transactions, Vol. 47, Issue 21
  • DOI: 10.1039/c8dt00601f

Cooperative water oxidation catalysis in a series of trinuclear metallosupramolecular ruthenium macrocycles
journal, January 2017

  • Kunz, Valentin; Lindner, Joachim O.; Schulze, Marcus
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/c7ee01557g

Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation
journal, April 2019

  • Natali, Mirco; Nastasi, Francesco; Puntoriero, Fausto
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201900365

Base-enhanced electrochemical water oxidation by a nickel complex in neutral aqueous solution
journal, January 2019

  • Zhang, Lu-Hua; Yu, Fengshou; Shi, Yumeng
  • Chemical Communications, Vol. 55, Issue 43
  • DOI: 10.1039/c9cc01865d

O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling
journal, January 2017

  • Shaffer, David W.; Xie, Yan; Concepcion, Javier J.
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/c7cs00542c

Mechanisms of molecular water oxidation in solution and on oxide surfaces
journal, January 2017

  • Meyer, Thomas J.; Sheridan, Matthew V.; Sherman, Benjamin D.
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/c7cs00465f

Light‐Driven Water Splitting Mediated by Photogenerated Bromine
journal, March 2018

  • Sheridan, Matthew V.; Wang, Ying; Wang, Degao
  • Angewandte Chemie, Vol. 130, Issue 13
  • DOI: 10.1002/ange.201708879

Electrocatalytic Water Oxidation by Mononuclear Cu(II) Aliphatic Tetraamine Complexes
journal, March 2019


Proton coupled electron transfer from Co 3 O 4 nanoparticles to photogenerated Ru(bpy) 3 3+ : base catalysis and buffer effect
journal, January 2018

  • Volpato, Giulia Alice; Bonetto, Alessandro; Marcomini, Antonio
  • Sustainable Energy & Fuels, Vol. 2, Issue 9
  • DOI: 10.1039/c8se00275d

Kinetics and mechanisms of catalytic water oxidation
journal, January 2019

  • Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo
  • Dalton Transactions, Vol. 48, Issue 3
  • DOI: 10.1039/c8dt04341h

Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018

  • Yu, Fengshou; Poole, David; Mathew, Simon
  • Angewandte Chemie International Edition, Vol. 57, Issue 35
  • DOI: 10.1002/anie.201805244

Mechanistic Insights into Light-Activated Catalysis for Water Oxidation: Mechanistic Insights into Light-Activated Catalysis for Water Oxidation
journal, January 2019

  • Natali, Mirco; Nastasi, Francesco; Puntoriero, Fausto
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201801236

How to make an efficient and robust molecular catalyst for water oxidation
journal, January 2017

  • Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Matheu, Roc
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/c7cs00248c

Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands
journal, May 2016

  • Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna
  • Angewandte Chemie, Vol. 128, Issue 28
  • DOI: 10.1002/ange.201601943

Light-Driven Water Splitting Mediated by Photogenerated Bromine
journal, March 2018

  • Sheridan, Matthew V.; Wang, Ying; Wang, Degao
  • Angewandte Chemie International Edition, Vol. 57, Issue 13
  • DOI: 10.1002/anie.201708879

Catalyst–solvent interactions in a dinuclear Ru-based water oxidation catalyst
journal, January 2016

  • Shatskiy, Andrey; Lomoth, Reiner; Abdel-Magied, Ahmed F.
  • Dalton Transactions, Vol. 45, Issue 47
  • DOI: 10.1039/c6dt03789e

Efficient BiVO 4 Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification
journal, December 2019

  • Meng, Qijun; Zhang, Biaobiao; Fan, Lizhou
  • Angewandte Chemie International Edition, Vol. 58, Issue 52
  • DOI: 10.1002/anie.201911303

A Nickel(II) Complex as a Homogeneous Electrocatalyst for Water Oxidation at Neutral pH: Dual Role of HPO 4 2− in Catalysis
journal, September 2016


Homogenous electrochemical water oxidation by a nickel( ii ) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand
journal, January 2019

  • Shahadat, Hossain M.; Younus, Hussein A.; Ahmad, Nazir
  • Catalysis Science & Technology, Vol. 9, Issue 20
  • DOI: 10.1039/c9cy01485c

Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018


Electrochemical Formation of Fe V (O) and Mechanism of Its Reaction with Water During O−O Bond Formation
journal, February 2017

  • Pattanayak, Santanu; Chowdhury, Debarati Roy; Garai, Bikash
  • Chemistry - A European Journal, Vol. 23, Issue 14
  • DOI: 10.1002/chem.201605061

Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands
journal, May 2016

  • Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201601943

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00897c

Crystal structures of three 4-substituted-2,2′-bipyridines synthesized by Sonogashira and Suzuki–Miyaura cross-coupling reactions
journal, March 2017

  • Luong Thi Thu, Thuy; Nguyen Bich, Ngan; Nguyen, Hien
  • Acta Crystallographica Section E Crystallographic Communications, Vol. 73, Issue 4
  • DOI: 10.1107/s2056989017004662

Synthesis of new photosensitive H 2 BBQ 2+ [ZnCl 4 ] 2− /[(ZnCl) 2 (μ-BBH)] complexes, through selective oxidation of H 2 O to H 2 O 2
journal, January 2017

  • Stylianou, M.; Hadjiadamou, I.; Drouza, C.
  • Dalton Transactions, Vol. 46, Issue 11
  • DOI: 10.1039/c6dt04643f

Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface
journal, November 2018


Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018

  • Yu, Fengshou; Poole, David; Mathew, Simon
  • Angewandte Chemie International Edition, Vol. 57, Issue 35
  • DOI: 10.1002/anie.201805244

Proton Acceptor near the Active Site Lowers Dramatically the O–O Bond Formation Energy Barrier in Photocatalytic Water Splitting
journal, November 2019

  • Shao, Yang; de Groot, Huub J. M.; Buda, Francesco
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 24
  • DOI: 10.1021/acs.jpclett.9b02914

Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface
journal, November 2018