DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

Abstract

We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10³-10⁴ K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10⁶–10⁷ K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [1];  [1];  [5];  [7];  [8];  [8];  [9];  [10];  [9];  [9];  [11];  [12];  [6];  [1] more »;  [13] « less
  1. PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
  2. SUNCAT Ctr Interface Sci & Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, Department of Chemistry, Stanford University, Stanford, California 94305, United States
  3. SUNCAT Ctr Interface Sci & Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
  4. PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, Center for Bio-Imaging Sciences, National University of Singapore, Singapore 117543
  5. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
  6. Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
  7. SUNCAT Ctr Interface Sci & Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
  8. Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
  9. Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
  10. Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, United States
  11. Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden, Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
  12. Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
  13. SUNCAT Ctr Interface Sci & Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States, Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1198682
Alternate Identifier(s):
OSTI ID: 1208831
Grant/Contract Number:  
AC03-76SF00515
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Name: Journal of Physical Chemistry Letters Journal Volume: 6 Journal Issue: 14; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; homogeneous ice nucleation; supercooled water; diffusivity; fragile to strong liquid transition; X-ray free-electron laser

Citation Formats

Laksmono, Hartawan, McQueen, Trevor A., Sellberg, Jonas A., Loh, N. Duane, Huang, Congcong, Schlesinger, Daniel, Sierra, Raymond G., Hampton, Christina Y., Nordlund, Dennis, Beye, Martin, Martin, Andrew V., Barty, Anton, Seibert, M. Marvin, Messerschmidt, Marc, Williams, Garth J., Boutet, Sébastien, Amann-Winkel, Katrin, Loerting, Thomas, Pettersson, Lars G. M., Bogan, Michael J., and Nilsson, Anders. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”. United States: N. p., 2015. Web. doi:10.1021/acs.jpclett.5b01164.
Laksmono, Hartawan, McQueen, Trevor A., Sellberg, Jonas A., Loh, N. Duane, Huang, Congcong, Schlesinger, Daniel, Sierra, Raymond G., Hampton, Christina Y., Nordlund, Dennis, Beye, Martin, Martin, Andrew V., Barty, Anton, Seibert, M. Marvin, Messerschmidt, Marc, Williams, Garth J., Boutet, Sébastien, Amann-Winkel, Katrin, Loerting, Thomas, Pettersson, Lars G. M., Bogan, Michael J., & Nilsson, Anders. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”. United States. https://doi.org/10.1021/acs.jpclett.5b01164
Laksmono, Hartawan, McQueen, Trevor A., Sellberg, Jonas A., Loh, N. Duane, Huang, Congcong, Schlesinger, Daniel, Sierra, Raymond G., Hampton, Christina Y., Nordlund, Dennis, Beye, Martin, Martin, Andrew V., Barty, Anton, Seibert, M. Marvin, Messerschmidt, Marc, Williams, Garth J., Boutet, Sébastien, Amann-Winkel, Katrin, Loerting, Thomas, Pettersson, Lars G. M., Bogan, Michael J., and Nilsson, Anders. Tue . "Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”". United States. https://doi.org/10.1021/acs.jpclett.5b01164.
@article{osti_1198682,
title = {Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”},
author = {Laksmono, Hartawan and McQueen, Trevor A. and Sellberg, Jonas A. and Loh, N. Duane and Huang, Congcong and Schlesinger, Daniel and Sierra, Raymond G. and Hampton, Christina Y. and Nordlund, Dennis and Beye, Martin and Martin, Andrew V. and Barty, Anton and Seibert, M. Marvin and Messerschmidt, Marc and Williams, Garth J. and Boutet, Sébastien and Amann-Winkel, Katrin and Loerting, Thomas and Pettersson, Lars G. M. and Bogan, Michael J. and Nilsson, Anders},
abstractNote = {We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10³-10⁴ K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10⁶–10⁷ K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.},
doi = {10.1021/acs.jpclett.5b01164},
journal = {Journal of Physical Chemistry Letters},
number = 14,
volume = 6,
place = {United States},
year = {Tue Jul 07 00:00:00 EDT 2015},
month = {Tue Jul 07 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpclett.5b01164

Citation Metrics:
Cited by: 93 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystallization of Amorphous Water Ice in the Solar System
journal, December 1996

  • Jenniskens, P.; Blake, D. F.
  • The Astrophysical Journal, Vol. 473, Issue 2
  • DOI: 10.1086/178220

Evidence for a new phase of water: water II
journal, March 1992

  • Speedy, Robin J.
  • The Journal of Physical Chemistry, Vol. 96, Issue 5
  • DOI: 10.1021/j100184a056

Sublimation in a Wilson chamber
journal, June 1947

  • Cwilong, B. M.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 190, Issue 1020, p. 137-143
  • DOI: 10.1098/rspa.1947.0066

The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS)
journal, March 2010


Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water
journal, April 1999

  • Ito, Kaori; Moynihan, Cornelius T.; Angell, C. Austen
  • Nature, Vol. 398, Issue 6727
  • DOI: 10.1038/19042

Liquid-like relaxation in hyperquenched water at ≤140 K
journal, January 2005

  • Kohl, Ingrid; Bachmann, Luis; Hallbrucker, Andreas
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 17
  • DOI: 10.1039/b507651j

Vitrification of pure liquid water by high pressure jet freezing
journal, August 1982

  • Mayer, Erwin; Brüggeller, Peter
  • Nature, Vol. 298, Issue 5876
  • DOI: 10.1038/298715a0

Crystal Nucleation and Growth in Large Clusters of SeF6 from Molecular Dynamics Simulations
journal, September 2000

  • Chushak, Yaroslav; Bartell, Lawrence S.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 41
  • DOI: 10.1021/jp002107e

Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets
journal, January 2011

  • Kuhn, T.; Earle, M. E.; Khalizov, A. F.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-2853-2011

Homogeneous ice nucleation from supercooled water
journal, January 2011

  • Li, Tianshu; Donadio, Davide; Russo, Giovanna
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22167a

Is it cubic? Ice crystallization from deeply supercooled water
journal, January 2011

  • Moore, Emily B.; Molinero, Valeria
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22022e

Water Modeled As an Intermediate Element between Carbon and Silicon
journal, April 2009

  • Molinero, Valeria; Moore, Emily B.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 13
  • DOI: 10.1021/jp805227c

The nucleation rate of crystalline ice in amorphous solid water
journal, September 2004

  • Safarik, D. J.; Mullins, C. B.
  • The Journal of Chemical Physics, Vol. 121, Issue 12
  • DOI: 10.1063/1.1779171

Kinetics of crystallizing D 2 O water near 150 K by Fourier transform infrared spectroscopy and a comparison with the corresponding calorimetric studies on H 2 O water
journal, July 1995

  • Hage, Wolfgang; Hallbrucker, Andreas; Mayer, Erwin
  • The Journal of Chemical Physics, Vol. 103, Issue 2
  • DOI: 10.1063/1.470140

Ice nucleation by particles immersed in supercooled cloud droplets
journal, January 2012

  • Murray, B. J.; O'Sullivan, D.; Atkinson, J. D.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35200a

The Freezing of Supercooled Water
journal, April 1955


Ice crystallization in water’s “no-man’s land”
journal, June 2010

  • Moore, Emily B.; Molinero, Valeria
  • The Journal of Chemical Physics, Vol. 132, Issue 24
  • DOI: 10.1063/1.3451112

Self-Diffusion of Supercooled Water to 238 K Using PGSE NMR Diffusion Measurements
journal, January 1999

  • Price, William S.; Ide, Hiroyuki; Arata, Yoji
  • The Journal of Physical Chemistry A, Vol. 103, Issue 4
  • DOI: 10.1021/jp9839044

The thermal diffusivity of water at high pressures and temperatures
journal, January 2001

  • Abramson, Evan H.; Brown, J. Michael; Slutsky, Leon J.
  • The Journal of Chemical Physics, Vol. 115, Issue 22
  • DOI: 10.1063/1.1418244

Rates of Homogeneous Ice Nucleation in Levitated H 2 O and D 2 O Droplets
journal, March 2005

  • Stöckel, Peter; Weidinger, Inez M.; Baumgärtel, Helmut
  • The Journal of Physical Chemistry A, Vol. 109, Issue 11
  • DOI: 10.1021/jp047665y

Complete vitrification in pure liquid water and dilute aqueous solutions
journal, December 1980

  • Brüggeller, Peter; Mayer, Erwin
  • Nature, Vol. 288, Issue 5791
  • DOI: 10.1038/288569a0

Homogeneous Condensation—Freezing Nucleation Rate Measurements for Small Water Droplets in an Expansion Cloud Chamber
journal, June 1981


Structural transformation in supercooled water controls the crystallization rate of ice
journal, November 2011


Surface crystallization of supercooled water in clouds
journal, December 2002

  • Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 25
  • DOI: 10.1073/pnas.252640699

Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets
journal, January 2004


Recent results on the connection between thermodynamics and dynamics in supercooled water
journal, September 2003


Homogeneous ice nucleation evaluated for several water models
journal, November 2014

  • Espinosa, J. R.; Sanz, E.; Valeriani, C.
  • The Journal of Chemical Physics, Vol. 141, Issue 18
  • DOI: 10.1063/1.4897524

Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters
journal, March 1995

  • Huang, Jinfan; Bartell, Lawrence S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 12
  • DOI: 10.1021/j100012a010

Rate of Nucleation in Condensed Systems
journal, January 1949

  • Turnbull, D.; Fisher, J. C.
  • The Journal of Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1063/1.1747055

Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation
journal, September 2013

  • Sanz, E.; Vega, C.; Espinosa, J. R.
  • Journal of the American Chemical Society, Vol. 135, Issue 40
  • DOI: 10.1021/ja4028814

Water's second glass transition
journal, October 2013

  • Amann-Winkel, K.; Gainaru, C.; Handle, P. H.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 44
  • DOI: 10.1073/pnas.1311718110

The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty
journal, January 2013

  • Riechers, Birte; Wittbracht, Frank; Hütten, Andreas
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 16
  • DOI: 10.1039/c3cp42437e

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
journal, June 2014

  • Sellberg, J. A.; Huang, C.; McQueen, T. A.
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13266

Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing
journal, March 2002

  • Matsumoto, Masakazu; Saito, Shinji; Ohmine, Iwao
  • Nature, Vol. 416, Issue 6879
  • DOI: 10.1038/416409a

The supercooling and nucleation of water
journal, April 1958


Crystallization kinetics of water below 150 K
journal, February 1994

  • Hage, Wolfgang; Hallbrucker, Andreas; Mayer, Erwin
  • The Journal of Chemical Physics, Vol. 100, Issue 4
  • DOI: 10.1063/1.466468

Water II is a "strong" liquid
journal, June 1993


Freezing injury: The special case of the sperm cell
journal, April 2012


The glass–liquid transition of hyperquenched water
journal, December 1987

  • Johari, G. P.; Hallbrucker, Andreas; Mayer, Erwin
  • Nature, Vol. 330, Issue 6148
  • DOI: 10.1038/330552a0

Kinetics of the homogeneous freezing of water
journal, January 2010

  • Murray, B. J.; Broadley, S. L.; Wilson, T. W.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 35
  • DOI: 10.1039/c003297b

The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

Freezing water in no-man's land
journal, January 2012

  • Manka, Alexandra; Pathak, Harshad; Tanimura, Shinobu
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 13
  • DOI: 10.1039/c2cp23116f

The Pressure Dependence of Self Diffusion in Supercooled Light and Heavy Water
journal, October 1988

  • Prielmeier, F. X.; Lang, E. W.; Speedy, R. J.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 92, Issue 10
  • DOI: 10.1002/bbpc.198800282

Ice nucleation at the nanoscale probes no man’s land of water
journal, May 2013

  • Li, Tianshu; Donadio, Davide; Galli, Giulia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2918

A microfluidic apparatus for the study of ice nucleation in supercooled water drops
journal, January 2009

  • Stan, Claudiu A.; Schneider, Grégory F.; Shevkoplyas, Sergey S.
  • Lab on a Chip, Vol. 9, Issue 16
  • DOI: 10.1039/b906198c

Freezing of Heavy Water (D 2 O) Nanodroplets
journal, June 2013

  • Bhabhe, Ashutosh; Pathak, Harshad; Wyslouzil, Barbara E.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 26
  • DOI: 10.1021/jp400070v

New method for vitrifying water and other liquids by rapid cooling of their aerosols
journal, July 1985

  • Mayer, Erwin
  • Journal of Applied Physics, Vol. 58, Issue 2
  • DOI: 10.1063/1.336179

Vitreous Ice: Irreversible Transformations During Warm-Up
journal, May 1965

  • McMILLAN, J. A.; Los, S. C.
  • Nature, Vol. 206, Issue 4986
  • DOI: 10.1038/206806a0

Formation of Glasses from Liquids and Biopolymers
journal, March 1995


Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

The existence of supercooled liquid water at 150?K
journal, April 1999

  • Smith, R. Scott; Kay, Bruce D.
  • Nature, Vol. 398, Issue 6730
  • DOI: 10.1038/19725