skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical Differentiation of Noisy, Nonsmooth Data

Abstract

We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.

Authors:
 [1]
  1. Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1198314
Resource Type:
Published Article
Journal Name:
ISRN Applied Mathematics
Additional Journal Information:
Journal Name: ISRN Applied Mathematics Journal Volume: 2011; Journal ID: ISSN 2090-5564
Publisher:
Hindawi (International Scholarly Research Network)
Country of Publication:
Country unknown/Code not available
Language:
English

Citation Formats

Chartrand, Rick. Numerical Differentiation of Noisy, Nonsmooth Data. Country unknown/Code not available: N. p., 2011. Web. doi:10.5402/2011/164564.
Chartrand, Rick. Numerical Differentiation of Noisy, Nonsmooth Data. Country unknown/Code not available. doi:https://doi.org/10.5402/2011/164564
Chartrand, Rick. Wed . "Numerical Differentiation of Noisy, Nonsmooth Data". Country unknown/Code not available. doi:https://doi.org/10.5402/2011/164564.
@article{osti_1198314,
title = {Numerical Differentiation of Noisy, Nonsmooth Data},
author = {Chartrand, Rick},
abstractNote = {We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.},
doi = {10.5402/2011/164564},
journal = {ISRN Applied Mathematics},
number = ,
volume = 2011,
place = {Country unknown/Code not available},
year = {2011},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.5402/2011/164564

Save / Share:

Works referenced in this record:

Iterative Methods for Total Variation Denoising
journal, January 1996

  • Vogel, C. R.; Oman, M. E.
  • SIAM Journal on Scientific Computing, Vol. 17, Issue 1
  • DOI: 10.1137/0917016

A variational method for numerical differentiation
journal, March 1995


Total variation regularisation of images corrupted by non-Gaussian noise using a quasi-Newton method
journal, January 2008


A new approach for flow-through respirometry measurements in humans
journal, June 2010

  • Melanson, Edward L.; Ingebrigtsen, Jan P.; Bergouignan, Audrey
  • American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol. 298, Issue 6
  • DOI: 10.1152/ajpregu.00055.2010

Abel inversion using total-variation regularization
journal, October 2005


Abel inversion using total variation regularization: applications
journal, December 2006

  • Asaki, Thomas J.; Campbell, Patrick R.; Chartrand, Rick
  • Inverse Problems in Science and Engineering, Vol. 14, Issue 8
  • DOI: 10.1080/17415970600882549

Convergence of an Iterative Method for Total Variation Denoising
journal, October 1997


Spline Functions and the Problem of Graduation
journal, October 1964

  • Schoenberg, I. J.
  • Proceedings of the National Academy of Sciences, Vol. 52, Issue 4
  • DOI: 10.1073/pnas.52.4.947

Smoothing by spline functions
journal, October 1967


Numerical Differentiation and Regularization
journal, June 1971

  • Cullum, Jane
  • SIAM Journal on Numerical Analysis, Vol. 8, Issue 2
  • DOI: 10.1137/0708026

A Variational Approach to Reconstructing Images Corrupted by Poisson Noise
journal, March 2007

  • Le, Triet; Chartrand, Rick; Asaki, Thomas J.
  • Journal of Mathematical Imaging and Vision, Vol. 27, Issue 3
  • DOI: 10.1007/s10851-007-0652-y

Inverse Problems Light: Numerical Differentiation
journal, June 2001

  • Hanke, Martin; Scherzer, Otmar
  • The American Mathematical Monthly, Vol. 108, Issue 6
  • DOI: 10.2307/2695705