skip to main content


Title: Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.
 [1] ;  [2]
  1. Brookhaven National Laboratory, Energy Sciences and Technology Department, P.O. Box 5000, Upton, NY 11973-5000, USA
  2. Argonne National Laboratory, Nuclear Engineering Division, 9700 S. Cass Avenue, Argonne, IL 60439, USA
Publication Date:
Grant/Contract Number:
W-31-109-Eng-38; AC02-98CH10886
Published Article
Journal Name:
Science and Technology of Nuclear Installations (Print)
Additional Journal Information:
Journal Name: Science and Technology of Nuclear Installations (Print); Journal Volume: 2009; Related Information: CHORUS Timestamp: 2017-06-18 18:48:11; Journal ID: ISSN 1687-6075
Hindawi Publishing Corporation
Sponsoring Org:
Country of Publication:
OSTI Identifier: