DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inflation, symmetry, and B-modes

Abstract

Here, we examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They claim this conformal symmetry is hidden when the action is written in the Einstein frame, and so has not been fully appreciated in the literature. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that standard Einstein gravity doesmore » not in fact possess conformal symmetry. Instead these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes as suggested in these recent papers. Instead, deforming around the shift symmetry systematically, tends to produce models of inflation with B-modes of appreciable amplitude. Such simple models typically also produce the observed red spectral index, Gaussian fluctuations, etc. In short: simple models of inflation, organized by expanding around a shift symmetry, are in excellent agreement with recent data.« less

Authors:
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1197793
Alternate Identifier(s):
OSTI ID: 1184796
Grant/Contract Number:  
FG02-05ER41360
Resource Type:
Published Article
Journal Name:
Physics Letters B
Additional Journal Information:
Journal Name: Physics Letters B Journal Volume: 745 Journal Issue: C; Journal ID: ISSN 0370-2693
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Hertzberg, Mark P. Inflation, symmetry, and B-modes. Netherlands: N. p., 2015. Web. doi:10.1016/j.physletb.2015.04.031.
Hertzberg, Mark P. Inflation, symmetry, and B-modes. Netherlands. https://doi.org/10.1016/j.physletb.2015.04.031
Hertzberg, Mark P. Fri . "Inflation, symmetry, and B-modes". Netherlands. https://doi.org/10.1016/j.physletb.2015.04.031.
@article{osti_1197793,
title = {Inflation, symmetry, and B-modes},
author = {Hertzberg, Mark P.},
abstractNote = {Here, we examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They claim this conformal symmetry is hidden when the action is written in the Einstein frame, and so has not been fully appreciated in the literature. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that standard Einstein gravity does not in fact possess conformal symmetry. Instead these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes as suggested in these recent papers. Instead, deforming around the shift symmetry systematically, tends to produce models of inflation with B-modes of appreciable amplitude. Such simple models typically also produce the observed red spectral index, Gaussian fluctuations, etc. In short: simple models of inflation, organized by expanding around a shift symmetry, are in excellent agreement with recent data.},
doi = {10.1016/j.physletb.2015.04.031},
journal = {Physics Letters B},
number = C,
volume = 745,
place = {Netherlands},
year = {Fri May 01 00:00:00 EDT 2015},
month = {Fri May 01 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.physletb.2015.04.031

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share: