skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

Abstract

X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be usefulmore » for data collection at synchrotron sources.« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [3];  [3];  [3];  [4];  [4];  [1];  [5]
  1. Stanford Univ., Stanford, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Johns Hopkins Univ. School of Medicine, Balitmore, MD (United States)
  3. SLAC National Accelerator Laboratory, Stanford, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Johns Hopkins Univ., Baltimore, MD (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1189952
Alternate Identifier(s):
OSTI ID: 1512102
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Acta Crystallographica. Section D: Biological Crystallography (Online)
Additional Journal Information:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography (Online); Journal Volume: 71; Journal Issue: 4; Journal ID: ISSN 1399-0047
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; microfluidics; serial crystallography; XFELs; crystal harvesting; sample delivery

Citation Formats

Lyubimov, Artem Y., Murray, Thomas D., Koehl, Antoine, Araci, Ismail Emre, Uervirojnangkoorn, Monarin, Zeldin, Oliver B., Cohen, Aina E., Soltis, S. Michael, Baxter, Elizabeth L., Brewster, Aaron S., Sauter, Nicholas K., Brunger, Axel T., and Berger, James M. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. United States: N. p., 2015. Web. doi:10.1107/S1399004715002308.
Lyubimov, Artem Y., Murray, Thomas D., Koehl, Antoine, Araci, Ismail Emre, Uervirojnangkoorn, Monarin, Zeldin, Oliver B., Cohen, Aina E., Soltis, S. Michael, Baxter, Elizabeth L., Brewster, Aaron S., Sauter, Nicholas K., Brunger, Axel T., & Berger, James M. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. United States. doi:10.1107/S1399004715002308.
Lyubimov, Artem Y., Murray, Thomas D., Koehl, Antoine, Araci, Ismail Emre, Uervirojnangkoorn, Monarin, Zeldin, Oliver B., Cohen, Aina E., Soltis, S. Michael, Baxter, Elizabeth L., Brewster, Aaron S., Sauter, Nicholas K., Brunger, Axel T., and Berger, James M. Fri . "Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array". United States. doi:10.1107/S1399004715002308. https://www.osti.gov/servlets/purl/1189952.
@article{osti_1189952,
title = {Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array},
author = {Lyubimov, Artem Y. and Murray, Thomas D. and Koehl, Antoine and Araci, Ismail Emre and Uervirojnangkoorn, Monarin and Zeldin, Oliver B. and Cohen, Aina E. and Soltis, S. Michael and Baxter, Elizabeth L. and Brewster, Aaron S. and Sauter, Nicholas K. and Brunger, Axel T. and Berger, James M.},
abstractNote = {X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.},
doi = {10.1107/S1399004715002308},
journal = {Acta Crystallographica. Section D: Biological Crystallography (Online)},
number = 4,
volume = 71,
place = {United States},
year = {2015},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Goniometer-based femtosecond crystallography with X-ray free electron lasers
journal, October 2014

  • Cohen, Aina E.; Soltis, S. Michael; González, Ana
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 48, p. 17122-17127
  • DOI: 10.1073/pnas.1418733111

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Room temperature femtosecond X-ray diffraction of photosystem II microcrystals
journal, June 2012

  • Kern, J.; Alonso-Mori, R.; Hellmich, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 25, p. 9721-9726
  • DOI: 10.1073/pnas.1204598109

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

A trap-and-release integrated microfluidic system for dynamic microarray applications
journal, January 2007

  • Tan, W.-H.; Takeuchi, S.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 4, p. 1146-1151
  • DOI: 10.1073/pnas.0606625104

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

Nanoflow electrospinning serial femtosecond crystallography
journal, October 2012

  • Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 11, p. 1584-1587
  • DOI: 10.1107/S0907444912038152