skip to main content

DOE PAGESDOE PAGES

Title: Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

Elevated atmospheric CO 2 (eCO 2) often increases photosynthetic CO 2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO 2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO 2. A was re-assessed a decade later to determine if initial enhancement of eCO 2 was sustained through time. Measurements were conducted at prevailing CO 2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO 2 response curves (A versus the CO 2 concentration in the intercellular air space (C i); or A-C i curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (A sat), maximum electron transport rate (J max), maximum Rubisco activity (V cmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (A sat) for eCO 2 treatments was 15.4 ± 0.8 μmol m -2 s -1, 22% higher than aCO 2 treatments (P<0.01). By 2009, A sat declined tomore » <50% of 1999 values, and there was no longer a significant effect of eCO 2 (A sat = 6.9 or 5.7 ± 0.7 μmol m -2 s -1 for eCO 2 or aCO 2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO 2 foliage was 17% less than in aCO 2 foliage. Photosynthetic N use efficiency (A sat:N) was greater in eCO 2 in 1999 resulting in greater A sat despite similar N content, but the enhanced efficiency in eCO 2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between J max or V cmax with declining N, or in the ratio of J max:V cmax through time. Results suggest that initial enhancement of photosynthesis to elevated CO 2 will not be sustained through time if nitrogen becomes limited.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Macquarie Univ., NSW (Australia)
  3. Univ. of Western Sydney, Richmond, NSW (Australia)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
AoB Plants
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-2851
Publisher:
Oxford University Press; Annals of Botany Company
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; Acclimation; down-regulation; free-air CO2 enrichment; nitrogen limitation; sweetgum.; 54 ENVIRONMENTAL SCIENCES; sweetgum
OSTI Identifier:
1185630
Alternate Identifier(s):
OSTI ID: 1261417