DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prospects for reducing the processing cost of lithium ion batteries

Abstract

A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

Authors:
; ;
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1249972
Alternate Identifier(s):
OSTI ID: 1185532
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Name: Journal of Power Sources Journal Volume: 275 Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
25 ENERGY STORAGE; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Lithium-ion battery; electrode processing; aqueous colloidal chemistry; thick electrodes; cost reduction study; formation cycle; solid electrolyte interface (SEI) layer; SEI formation time

Citation Formats

Wood, III, David L., Li, Jianlin, and Daniel, Claus. Prospects for reducing the processing cost of lithium ion batteries. Netherlands: N. p., 2015. Web. doi:10.1016/j.jpowsour.2014.11.019.
Wood, III, David L., Li, Jianlin, & Daniel, Claus. Prospects for reducing the processing cost of lithium ion batteries. Netherlands. https://doi.org/10.1016/j.jpowsour.2014.11.019
Wood, III, David L., Li, Jianlin, and Daniel, Claus. Sun . "Prospects for reducing the processing cost of lithium ion batteries". Netherlands. https://doi.org/10.1016/j.jpowsour.2014.11.019.
@article{osti_1249972,
title = {Prospects for reducing the processing cost of lithium ion batteries},
author = {Wood, III, David L. and Li, Jianlin and Daniel, Claus},
abstractNote = {A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).},
doi = {10.1016/j.jpowsour.2014.11.019},
journal = {Journal of Power Sources},
number = C,
volume = 275,
place = {Netherlands},
year = {Sun Feb 01 00:00:00 EST 2015},
month = {Sun Feb 01 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.jpowsour.2014.11.019

Citation Metrics:
Cited by: 479 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A novel and efficient water-based composite binder for LiCoO2 cathodes in lithium-ion batteries
journal, November 2007


The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries
journal, December 2001


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes
journal, January 2001

  • Zhang, Shengshui; Ding, Michael S.; Xu, Kang
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1414946

Ageing mechanisms in lithium-ion batteries
journal, September 2005


Superior Performance of LiFePO 4 Aqueous Dispersions via Corona Treatment and Surface Energy Optimization
journal, January 2012

  • Li, Jianlin; Rulison, Christopher; Kiggans, Jim
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.018208jes

Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries
journal, September 2008


Improvements of Dispersion Homogeneity and Cell Performance of Aqueous-Processed LiCoO[sub 2] Cathodes by Using Dispersant of PAA–NH[sub 4]
journal, January 2006

  • Li, Chia-Chen; Lee, Jyh-Tsung; Peng, Xing-Wei
  • Journal of The Electrochemical Society, Vol. 153, Issue 5
  • DOI: 10.1149/1.2177071

Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO 4 Cathode Dispersions and Polyethyleneimine Dispersant
journal, November 2012

  • Li, Jianlin; Armstrong, Beth L.; Kiggans, Jim
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.037302jes

Optimization of LiFePO 4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing
journal, February 2012

  • Li, Jianlin; Armstrong, Beth L.; Kiggans, Jim
  • Langmuir, Vol. 28, Issue 8
  • DOI: 10.1021/la205157d

The Origin of Stress in the Solid Electrolyte Interphase on Carbon Electrodes for Li Ion Batteries
journal, October 2013

  • Tokranov, A.; Sheldon, B. W.; Lu, P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 1
  • DOI: 10.1149/2.009401jes

Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO[sub 4] Cathodes
journal, January 2010

  • Li, Chia-Chen; Peng, Xing-Wei; Lee, Jyh-Tsung
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3308595

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
journal, December 2012

  • Pinson, Matthew B.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.044302jes

A Novel Dual-Current Formation Process for Advanced Lithium-Ion Batteries
journal, January 2005

  • Chiang, Pin-Chi Julia; Wu, Mao-Sung; Lin, Jung-Cheng
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 8
  • DOI: 10.1149/1.1951204

The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells
journal, October 2010

  • Huang, Chenghuan; Huang, Kelong; Wang, Haiyan
  • Journal of Solid State Electrochemistry, Vol. 15, Issue 9
  • DOI: 10.1007/s10008-010-1219-1

Effects of PAA-NH[sub 4] Addition on the Dispersion Property of Aqueous LiCoO[sub 2] Slurries and the Cell Performance of As-Prepared LiCoO[sub 2] Cathodes
journal, January 2005

  • Li, Chia-Chen; Lee, Jyh-Tsung; Lo, Chen-Yu
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 10
  • DOI: 10.1149/1.2012287

Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes
journal, May 2010


Design of Aqueous Processed Thick LiFePO[sub 4] Composite Electrodes for High-Energy Lithium Battery
journal, January 2009

  • Porcher, W.; Lestriez, B.; Jouanneau, S.
  • Journal of The Electrochemical Society, Vol. 156, Issue 3
  • DOI: 10.1149/1.3046129

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Effect of Carboxymethyl Cellulose on Aqueous Processing of LiFePO[sub 4] Cathodes and Their Electrochemical Performance
journal, January 2008

  • Lee, Jin-Hyon; Kim, Jeom-Soo; Kim, Yoon Chang
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 10
  • DOI: 10.1149/1.2966286

Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes
journal, September 2013

  • Li, Jianlin; Armstrong, Beth L.; Daniel, Claus
  • Journal of Colloid and Interface Science, Vol. 405, p. 118-124
  • DOI: 10.1016/j.jcis.2013.05.030

Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties
journal, December 2007


LiFePO4 water-soluble binder electrode for Li-ion batteries
journal, January 2007


Improved MCMB Anodes by Surface Modification with Self-Assembling Nonionic Surfactants
journal, January 2004

  • Reeves, S. D.; Morris, R. Scott
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 8
  • DOI: 10.1149/1.1764412

Effects of pH on the dispersion and cell performance of LiCoO2 cathodes based on the aqueous process
journal, April 2007

  • Li, Chia-Chen; Lee, Jyh-Tsung; Tung, Yi-Ling
  • Journal of Materials Science, Vol. 42, Issue 14
  • DOI: 10.1007/s10853-006-1172-7

Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder
journal, April 2009


Morphology of the Solid Electrolyte Interphase on Graphite in Dependency on the Formation Current
journal, January 2011

  • Märkle, Wolfgang; Lu, Chia-Ying; Novák, Petr
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.077112jes

Works referencing / citing this record:

Microstructure Evolution of Concentration Gradient Li[Ni 0.75 Co 0.10 Mn 0.15 ]O 2 Cathode for Lithium-Ion Batteries
journal, May 2018

  • Yoon, Chong S.; Kim, Suk Jun; Kim, Un-Hyuck
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201802090

High‐Performance, Low‐Cost, and Dense‐Structure Electrodes with High Mass Loading for Lithium‐Ion Batteries
journal, July 2019

  • Wu, Xinsheng; Xia, Shuixin; Huang, Yuanqi
  • Advanced Functional Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adfm.201903961

Water‐Based Paintable LiCoO 2 Microelectrodes: A High‐Rate Li‐Ion Battery Free of Conductive and Binder Additives
journal, August 2019

  • Páez Martínez, Carlos A.; Exantus, Chellda; Dallel, Dorra
  • Advanced Materials Technologies, Vol. 4, Issue 11
  • DOI: 10.1002/admt.201900499

An Aqueous Ca-Ion Battery
journal, October 2017

  • Gheytani, Saman; Liang, Yanliang; Wu, Feilong
  • Advanced Science, Vol. 4, Issue 12
  • DOI: 10.1002/advs.201700465

Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective
journal, June 2016

  • Mahmood, Nasir; Tang, Tianyu; Hou, Yanglong
  • Advanced Energy Materials, Vol. 6, Issue 17
  • DOI: 10.1002/aenm.201600374

Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills
journal, July 2016

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Advanced Energy Materials, Vol. 6, Issue 21
  • DOI: 10.1002/aenm.201600655

Improved Cycling Stability of Li[Ni 0.90 Co 0.05 Mn 0.05 ]O 2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries
journal, July 2018

  • Park, Kang-Joon; Jung, Hun-Gi; Kuo, Liang-Yin
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801202

Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles
journal, February 2019

  • Kim, Un‐Hyuck; Ryu, Hoon‐Hee; Kim, Jae‐Hyung
  • Advanced Energy Materials, Vol. 9, Issue 15
  • DOI: 10.1002/aenm.201803902

A Comparison of Formation Methods for Graphite//LiFePO 4 Cells
journal, January 2019

  • Moretti, Arianna; Sharova, Varvara; Carvalho, Diogo V.
  • Batteries & Supercaps, Vol. 2, Issue 3
  • DOI: 10.1002/batt.201800109

A Functionally Graded Cathode Architecture for Extending the Cycle‐Life of Potassium‐Oxygen Batteries
journal, April 2019


Stable Acetals of Glyoxal as Electrolyte Solvents for Lithium‐Ion Batteries
journal, August 2019

  • Hess, Lars H.; Wankmüller, Simon; Köps, Lukas
  • Batteries & Supercaps, Vol. 2, Issue 10
  • DOI: 10.1002/batt.201900051

Influence of the Formation Current Density on the Transport Properties of Galvanostatically Formed Model‐Type Solid Electrolyte Interphases
journal, September 2019

  • Kranz, Sebastian; Kranz, Tobias; Graubner, Tim
  • Batteries & Supercaps, Vol. 2, Issue 12
  • DOI: 10.1002/batt.201900110

Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies
journal, November 2019

  • Cunha, Ricardo Pinto; Lombardo, Teo; Primo, Emiliano N.
  • Batteries & Supercaps, Vol. 3, Issue 1
  • DOI: 10.1002/batt.201900135

High‐Voltage Performance of Ni‐Rich NCA Cathodes: Linking Operating Voltage with Cathode Degradation
journal, August 2019

  • David, Lamuel; Mohanty, Debasish; Geng, Linxiao
  • ChemElectroChem, Vol. 6, Issue 22
  • DOI: 10.1002/celc.201901338

In Situ Coating of Li[Ni 0.33 Mn 0.33 Co 0.33 ]O 2 Particles to Enable Aqueous Electrode Processing
journal, April 2016

  • Loeffler, Nicholas; Kim, Guk-Tae; Mueller, Franziska
  • ChemSusChem, Vol. 9, Issue 10
  • DOI: 10.1002/cssc.201600353

Concept for the Analysis of the Electrolyte Composition within the Cell Manufacturing Process: From Sealing to Sample Preparation
journal, April 2019

  • Horsthemke, Fabian; Winkler, Volker; Diehl, Marcel
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201801081

Influence of the Cell Format on the Electrolyte Filling Process of Lithium‐Ion Cells
journal, April 2019

  • Günter, Florian J.; Rössler, Stefan; Schulz, Michael
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201801108

Investigation of the Adhesion Strength along the Electrode Manufacturing Process for Improved Lithium‐Ion Anodes
journal, May 2019

  • Billot, Nicolas; Günther, Till; Schreiner, David
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201801136

Extrusion‐Based Processing of Cathodes: Influence of Solid Content on Suspension and Electrode Properties
journal, May 2019

  • Haarmann, Matthias; Haselrieder, Wolfgang; Kwade, Arno
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201801169

An Innovative Process for Ultra‐Thick Electrodes Elaboration: Toward Low‐Cost and High‐Energy Batteries
journal, April 2019

  • Zolin, Lorenzo; Chandesris, Marion; Porcher, Willy
  • Energy Technology, Vol. 7, Issue 5
  • DOI: 10.1002/ente.201900025

Influence of Separator Material on Infiltration Rate and Wetting Behavior of Lithium‐Ion Batteries
journal, May 2019

  • Schilling, Antje; Wiemers-Meyer, Simon; Winkler, Volker
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900078

The Effects of Mechanical and Thermal Loads during Lithium‐Ion Pouch Cell Formation and Their Impacts on Process Time
journal, May 2019

  • Heimes, Heiner Hans; Offermanns, Christian; Mohsseni, Ahmad
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900118

Toward Data‐Driven Applications in Lithium‐Ion Battery Cell Manufacturing
journal, May 2019

  • Turetskyy, Artem; Thiede, Sebastian; Thomitzek, Matthias
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900136

Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries
journal, June 2019

  • Kremer, Lea Sophie; Hoffmann, Alice; Danner, Timo
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900167

Modelling of the Calendering Process of NMC‐622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations
journal, September 2019

  • Schreiner, David; Oguntke, Maximilian; Günther, Till
  • Energy Technology, Vol. 7, Issue 11
  • DOI: 10.1002/ente.201900840

Solid versus Liquid—A Bottom‐Up Calculation Model to Analyze the Manufacturing Cost of Future High‐Energy Batteries
journal, December 2019

  • Schnell, Joscha; Knörzer, Heiko; Imbsweiler, Anna Julia
  • Energy Technology, Vol. 8, Issue 3
  • DOI: 10.1002/ente.201901237

Delamination‐Free Multifunctional Separator for Long‐Term Stability of Lithium‐Ion Batteries
journal, February 2019


Rapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ visualization by neutron radiography
journal, February 2019

  • Habedank, Jan Bernd; Günter, Florian J.; Billot, Nicolas
  • The International Journal of Advanced Manufacturing Technology, Vol. 102, Issue 9-12
  • DOI: 10.1007/s00170-019-03347-4

Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries
journal, January 2017

  • Bibienne, Thomas; Maillaud, Laurent; Rousselot, Steeve
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 5
  • DOI: 10.1007/s10008-016-3488-9

Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density
journal, May 2017

  • Placke, Tobias; Kloepsch, Richard; Dühnen, Simon
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3610-7

The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries
journal, January 2016

  • Notake, Kouhei; Gunji, Takao; Kokubun, Hayato
  • Journal of Applied Electrochemistry, Vol. 46, Issue 3
  • DOI: 10.1007/s10800-016-0930-8

Sintered electrode full cells for high energy density lithium-ion batteries
journal, August 2018

  • Robinson, J. Pierce; Ruppert, John J.; Dong, Hongxu
  • Journal of Applied Electrochemistry, Vol. 48, Issue 11
  • DOI: 10.1007/s10800-018-1242-y

Optimization of synthesis condition of water-resistant and thin titanium oxide layer-coated Ni-rich layered cathode materials and their cathode performance
journal, November 2018

  • Liu, Yubin; Tanabe, Toyokazu; Irii, Yuta
  • Journal of Applied Electrochemistry, Vol. 49, Issue 1
  • DOI: 10.1007/s10800-018-1272-5

Chronoamperometry as an electrochemical in situ approach to investigate the electrolyte wetting process of lithium-ion cells
journal, January 2020

  • Peter, Christian; Nikolowski, Kristian; Reuber, Sebastian
  • Journal of Applied Electrochemistry, Vol. 50, Issue 3
  • DOI: 10.1007/s10800-019-01383-2

Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries
journal, August 2019

  • Kelly, Jarod C.; Dai, Qiang; Wang, Michael
  • Mitigation and Adaptation Strategies for Global Change, Vol. 25, Issue 3
  • DOI: 10.1007/s11027-019-09869-2

Life cycle assessment of electric vehicles and buses in Brazil: effects of local manufacturing, mass reduction, and energy consumption evolution
journal, April 2019

  • Velandia Vargas, Jorge Enrique; Falco, Daniela Godoy; da Silva Walter, Arnaldo César
  • The International Journal of Life Cycle Assessment, Vol. 24, Issue 10
  • DOI: 10.1007/s11367-019-01615-9

Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


Current status and challenges for automotive battery production technologies
journal, April 2018


Characterization and performance evaluation of lithium-ion battery separators
journal, December 2018


Synthesis of snowflake-shaped Co 3 O 4 with a high aspect ratio as a high capacity anode material for lithium ion batteries
journal, January 2015

  • Wang, Bin; Lu, Xiao-Ying; Tang, Yuanyuan
  • Journal of Materials Chemistry A, Vol. 3, Issue 18
  • DOI: 10.1039/c5ta00140d

Anatase TiO 2 nanocubes for fast and durable sodium ion battery anodes
journal, January 2015

  • Yang, Xuming; Wang, Chao; Yang, Yingchang
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/c5ta00614g

Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries
journal, January 2017

  • Liu, Zhengjiao; Bai, Shuai; Liu, Boli
  • Journal of Materials Chemistry A, Vol. 5, Issue 25
  • DOI: 10.1039/c7ta03576d

Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers
journal, January 2018

  • Bresser, Dominic; Buchholz, Daniel; Moretti, Arianna
  • Energy & Environmental Science, Vol. 11, Issue 11
  • DOI: 10.1039/c8ee00640g

Coral-like directional porosity lithium ion battery cathodes by ice templating
journal, January 2018

  • Huang, Chun; Grant, Patrick S.
  • Journal of Materials Chemistry A, Vol. 6, Issue 30
  • DOI: 10.1039/c8ta05049j

Molecular dynamics investigation of reduced ethylene carbonate aggregation at the onset of solid electrolyte interphase formation
journal, January 2019

  • Boyer, Mathew J.; Hwang, Gyeong S.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 40
  • DOI: 10.1039/c9cp04316k

Emerging investigator series: capacitive deionization for selective removal of nitrate and perchlorate: impacts of ion selectivity and operating constraints on treatment costs
journal, January 2020

  • Hand, Steven; Cusick, Roland D.
  • Environmental Science: Water Research & Technology, Vol. 6, Issue 4
  • DOI: 10.1039/c9ew01105f

Silica from diatom frustules as anode material for Li-ion batteries
journal, January 2019

  • Norberg, Andreas Nicolai; Wagner, Nils Peter; Kaland, Henning
  • RSC Advances, Vol. 9, Issue 70
  • DOI: 10.1039/c9ra07271c

Carbon-coated CoSe 2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties
journal, January 2019

  • Tian, Jiawei; Li, Jia; Zhang, Yongxing
  • Journal of Materials Chemistry A, Vol. 7, Issue 37
  • DOI: 10.1039/c9ta06273d

Suppressing detrimental phase transitions via tungsten doping of LiNiO 2 cathode for next-generation lithium-ion batteries
journal, January 2019

  • Ryu, Hoon-Hee; Park, Geon-Tae; Yoon, Chong S.
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta06402h

Low-tortuosity and graded lithium ion battery cathodes by ice templating
journal, January 2019

  • Huang, Chun; Dontigny, Martin; Zaghib, Karim
  • Journal of Materials Chemistry A, Vol. 7, Issue 37
  • DOI: 10.1039/c9ta07269a

Pumped thermal grid storage with heat exchange
journal, July 2017

  • Laughlin, Robert B.
  • Journal of Renewable and Sustainable Energy, Vol. 9, Issue 4
  • DOI: 10.1063/1.4994054

Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP
journal, August 2017


Active formation of Li-ion batteries and its effect on cycle life
journal, August 2019

  • Pathan, Tanveerkhan S.; Rashid, Muhammad; Walker, Marc
  • Journal of Physics: Energy, Vol. 1, Issue 4
  • DOI: 10.1088/2515-7655/ab2e92

Energy storage through intercalation reactions: electrodes for rechargeable batteries
journal, December 2016

  • Massé, Robert C.; Liu, Chaofeng; Li, Yanwei
  • National Science Review, Vol. 4, Issue 1
  • DOI: 10.1093/nsr/nww093

The ‘use-by date’ for lithium-ion battery components
journal, July 2019

  • Gorman, Scott F.; Pathan, Tanveerkhan S.; Kendrick, Emma
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2152
  • DOI: 10.1098/rsta.2018.0299

A brief review: Past, present and future of lithium ion batteries
journal, December 2016


Localized Swelling Inhomogeneity Detection in Lithium Ion Cells Using Multi-Dimensional Laser Scanning
journal, January 2019

  • Zhao, Yan; Spingler, Franz B.; Patel, Yatish
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0011902jes

Introduction to Electrochemical Impedance Spectroscopy as a Measurement Method for the Wetting Degree of Lithium-Ion Cells
journal, January 2018

  • Günter, Florian J.; Habedank, Jan Bernd; Schreiner, David
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0081814jes

Influence of the Electrolyte Quantity on Lithium-Ion Cells
journal, January 2019

  • Günter, Florian J.; Burgstaller, Clemens; Konwitschny, Fabian
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0121910jes

X-ray Based Visualization of the Electrolyte Filling Process of Lithium Ion Batteries
journal, December 2018

  • Schilling, Antje; Gümbel, Philip; Möller, Markus
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0251903jes

Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells
journal, January 2018

  • Quinn, Jason B.; Waldmann, Thomas; Richter, Karsten
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0281814jes

Characterization of Surface Free Energy of Composite Electrodes for Lithium-Ion Batteries
journal, January 2018

  • Davoodabadi, Ali; Li, Jianlin; Liang, Yongfeng
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0341811jes

Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery
journal, January 2016

  • Du, Zhijia; Janke, C. J.; Li, Jianlin
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.1171613jes

Interrelation between Redox Molecule Transport and Li + Ion Transport across a Model Solid Electrolyte Interphase Grown on a Glassy Carbon Electrode
journal, January 2017

  • Kranz, T.; Kranz, S.; Miß, V.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.1171714jes

The Influence of Polyvinylidene Fluoride (PVDF) Binder Properties on LiNi 0.33 Co 0.33 Mn 0.33 O 2 (NMC) Electrodes Made by a Dry-Powder-Coating Process
journal, January 2019

  • Wang, Ming; Hu, Jiazhi; Wang, Yikai
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.1171910jes

An Approach for Pre-Lithiation of Li 1+ x Ni 0.5 Mn 1.5 O 4 Cathodes Mitigating Active Lithium Loss
journal, January 2019

  • Betz, Johannes; Nowak, Laura; Winter, Martin
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.1221914jes

Enhanced Fast Charging and Reduced Lithium-Plating by Laser-Structured Anodes for Lithium-Ion Batteries
journal, January 2019

  • Habedank, Jan Bernd; Kriegler, Johannes; Zaeh, Michael F.
  • Journal of The Electrochemical Society, Vol. 166, Issue 16
  • DOI: 10.1149/2.1241915jes

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
journal, January 2017

  • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1571707jes

Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode Performance
journal, January 2016

  • Li, Jianlin; Daniel, Claus; An, Seong Jin
  • MRS Advances, Vol. 1, Issue 15
  • DOI: 10.1557/adv.2016.6

Industrial applications of ultrafast laser processing
journal, December 2016

  • Mottay, Eric; Liu, Xinbing; Zhang, Haibin
  • MRS Bulletin, Vol. 41, Issue 12
  • DOI: 10.1557/mrs.2016.275

Improved Capacity Retention of SiO2-Coated LiNi0.6Mn0.2Co0.2O2 Cathode Material for Lithium-Ion Batteries
journal, September 2019

  • Lu, Xiaoxue; Zhang, Ningxin; Jahn, Marcus
  • Applied Sciences, Vol. 9, Issue 18
  • DOI: 10.3390/app9183671

The Ultrafast Laser Ablation of Li(Ni0.6Mn0.2Co0.2)O2 Electrodes with High Mass Loading
journal, September 2019

  • Zhu, Penghui; Seifert, Hans Jürgen; Pfleging, Wilhelm
  • Applied Sciences, Vol. 9, Issue 19
  • DOI: 10.3390/app9194067

Exploring the Economic Potential of Sodium-Ion Batteries
journal, January 2019


Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications
journal, June 2019


Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results
journal, February 2016

  • Smekens, Jelle; Gopalakrishnan, Rahul; Steen, Nils
  • Energies, Vol. 9, Issue 2
  • DOI: 10.3390/en9020104

Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl3/EMIMCl Electrolyte
journal, June 2018

  • Ellingsen, Linda; Holland, Alex; Drillet, Jean-Francois
  • Materials, Vol. 11, Issue 6
  • DOI: 10.3390/ma11060936

Tailoring of Aqueous-Based Carbon Nanotube–Nanocellulose Films as Self-Standing Flexible Anodes for Lithium-Ion Storage
journal, April 2019

  • Nguyen, Hoang Kha; Bae, Jaehan; Hur, Jaehyun
  • Nanomaterials, Vol. 9, Issue 4
  • DOI: 10.3390/nano9040655