DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

Abstract

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H-2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H-2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H-2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H-2 production in ΔhydGΔech was undetectable, and the ethanol yield nearly doubled to 64% of the maximum theoretical yield. Genomic analysis of ΔhydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation was found in ethanol-tolerant C. thermocellum strain E50C, ΔhydG and ΔhydGΔech are not more ethanol tolerant than the wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. Conclusions: Finally, themore » dramatic increase in ethanol production suggests that targeting protein post-translational modification is a promising new approach for simultaneous inactivation of multiple enzymes.« less

Authors:
 [1];  [2];  [2];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Div. and BioEnergy Science Center
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center; Dartmouth College, Hanover, NH (United States). Thayer School of Engineering
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1185431
Alternate Identifier(s):
OSTI ID: 1327623
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; Cellulosic ethanol; Clostridium thermocellum; Hydrogenase maturation; Metabolic engineering

Citation Formats

Biswas, Ranjita, Zheng, Tianyong, Olson, Daniel G., Lynd, Lee R., and Guss, Adam M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. United States: N. p., 2015. Web. doi:10.1186/s13068-015-0204-4.
Biswas, Ranjita, Zheng, Tianyong, Olson, Daniel G., Lynd, Lee R., & Guss, Adam M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. United States. https://doi.org/10.1186/s13068-015-0204-4
Biswas, Ranjita, Zheng, Tianyong, Olson, Daniel G., Lynd, Lee R., and Guss, Adam M. Thu . "Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum". United States. https://doi.org/10.1186/s13068-015-0204-4. https://www.osti.gov/servlets/purl/1185431.
@article{osti_1185431,
title = {Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum},
author = {Biswas, Ranjita and Zheng, Tianyong and Olson, Daniel G. and Lynd, Lee R. and Guss, Adam M.},
abstractNote = {Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H-2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H-2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H-2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H-2 production in ΔhydGΔech was undetectable, and the ethanol yield nearly doubled to 64% of the maximum theoretical yield. Genomic analysis of ΔhydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation was found in ethanol-tolerant C. thermocellum strain E50C, ΔhydG and ΔhydGΔech are not more ethanol tolerant than the wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. Conclusions: Finally, the dramatic increase in ethanol production suggests that targeting protein post-translational modification is a promising new approach for simultaneous inactivation of multiple enzymes.},
doi = {10.1186/s13068-015-0204-4},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 8,
place = {United States},
year = {Thu Feb 12 00:00:00 EST 2015},
month = {Thu Feb 12 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 82 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transformation of Clostridium Thermocellum by Electroporation
book, January 2012


Increase in Ethanol Yield via Elimination of Lactate Production in an Ethanol-Tolerant Mutant of Clostridium thermocellum
journal, February 2014


Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum
journal, May 2014

  • Rydzak, Thomas; Grigoryan, Marina; Cunningham, Zack J.
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 14
  • DOI: 10.1007/s00253-014-5798-0

The surprising diversity of clostridial hydrogenases: a comparative genomic perspective
journal, April 2010


Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
journal, January 2012


Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans
journal, August 2002


Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
journal, May 2013

  • van der Veen, Douwe; Lo, Jonathan; Brown, Steven D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 40, Issue 7
  • DOI: 10.1007/s10295-013-1275-5

New yeast recombineering tools for bacteria
journal, September 2009


Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP
journal, May 2010


Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough
journal, June 2007

  • Caffrey, S. M.; Park, H. -S.; Voordouw, J. K.
  • Journal of Bacteriology, Vol. 189, Issue 17
  • DOI: 10.1128/JB.00747-07

Thermophilic lignocellulose deconstruction
journal, May 2014

  • Blumer-Schuette, Sara E.; Brown, Steven D.; Sander, Kyle B.
  • FEMS Microbiology Reviews, Vol. 38, Issue 3
  • DOI: 10.1111/1574-6976.12044

Evidence for a Fourth Hydrogenase in Desulfovibrio fructosovorans
journal, February 2002


Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum
journal, November 2006

  • Williams, Taufika Islam; Combs, Jennifer C.; Lynn, Bert C.
  • Applied Microbiology and Biotechnology, Vol. 74, Issue 2
  • DOI: 10.1007/s00253-006-0689-7

Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization
journal, October 2004

  • Özkan, Melek; Yllmaz, Ebru I.; Lynd, Lee R.
  • Canadian Journal of Microbiology, Vol. 50, Issue 10
  • DOI: 10.1139/w04-071

How biotech can transform biofuels
journal, February 2008

  • Lynd, Lee R.; Laser, Mark S.; Bransby, David
  • Nature Biotechnology, Vol. 26, Issue 2, p. 169-172
  • DOI: 10.1038/nbt0208-169

A Targetron System for Gene Targeting in Thermophiles and Its Application in Clostridium thermocellum
journal, July 2013


Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
journal, January 2013


Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
journal, January 2011

  • Raman, Babu; McKeown, Catherine K; Rodriguez, Miguel
  • BMC Microbiology, Vol. 11, Issue 1, Article No. 134
  • DOI: 10.1186/1471-2180-11-134

Insights into [FeFe]-Hydrogenase Structure, Mechanism, and Maturation
journal, August 2011


Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
journal, January 2012

  • Guss, Adam M.; Olson, Daniel G.; Caiazza, Nicky C.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-30

High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes
journal, September 2011

  • Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.
  • Applied and Environmental Microbiology, Vol. 77, Issue 23, p. 8288-8294
  • DOI: 10.1128/AEM.00646-11

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
journal, August 2011

  • Shao, Xiongjun; Raman, Babu; Zhu, Mingjun
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 3
  • DOI: 10.1007/s00253-011-3492-z

Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant
journal, August 2010

  • Tripathi, S. A.; Olson, D. G.; Argyros, D. A.
  • Applied and Environmental Microbiology, Vol. 76, Issue 19, p. 6591-6599
  • DOI: 10.1128/AEM.01484-10

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
journal, August 2011

  • Brown, S. D.; Guss, A. M.; Karpinets, T. V.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1102444108

Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum
journal, November 2006

  • Williams, Taufika Islam; Combs, Jennifer C.; Lynn, Bert C.
  • Applied Microbiology and Biotechnology, Vol. 74, Issue 2
  • DOI: 10.1007/s00253-006-0689-7

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
journal, August 2011

  • Shao, Xiongjun; Raman, Babu; Zhu, Mingjun
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 3
  • DOI: 10.1007/s00253-011-3492-z

Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
journal, May 2013

  • van der Veen, Douwe; Lo, Jonathan; Brown, Steven D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 40, Issue 7
  • DOI: 10.1007/s10295-013-1275-5

New yeast recombineering tools for bacteria
journal, September 2009


Insights into [FeFe]-Hydrogenase Structure, Mechanism, and Maturation
journal, August 2011


Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP
journal, May 2010


How biotech can transform biofuels
journal, February 2008

  • Lynd, Lee R.; Laser, Mark S.; Bransby, David
  • Nature Biotechnology, Vol. 26, Issue 2, p. 169-172
  • DOI: 10.1038/nbt0208-169

Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants
journal, September 2020

  • Teixeira, Samuel Cota; de Souza, Guilherme; Borges, Bruna Cristina
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-72230-0

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
journal, August 2011

  • Brown, S. D.; Guss, A. M.; Karpinets, T. V.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1102444108

The surprising diversity of clostridial hydrogenases: a comparative genomic perspective
journal, April 2010


Thermophilic lignocellulose deconstruction
journal, May 2014

  • Blumer-Schuette, Sara E.; Brown, Steven D.; Sander, Kyle B.
  • FEMS Microbiology Reviews, Vol. 38, Issue 3
  • DOI: 10.1111/1574-6976.12044

Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans
journal, August 2002


Complete Genome Sequence of the Cellulolytic Thermophile Clostridium thermocellum DSM1313
journal, April 2011

  • Feinberg, L.; Foden, J.; Barrett, T.
  • Journal of Bacteriology, Vol. 193, Issue 11, p. 2906-2907
  • DOI: 10.1128/jb.00322-11

Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization
journal, October 2004

  • Özkan, Melek; Yllmaz, Ebru I.; Lynd, Lee R.
  • Canadian Journal of Microbiology, Vol. 50, Issue 10
  • DOI: 10.1139/w04-071

Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
journal, January 2011

  • Raman, Babu; McKeown, Catherine K; Rodriguez, Miguel
  • BMC Microbiology, Vol. 11, Issue 1, Article No. 134
  • DOI: 10.1186/1471-2180-11-134

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
journal, January 2012

  • Guss, Adam M.; Olson, Daniel G.; Caiazza, Nicky C.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-30

A Targetron System for Gene Targeting in Thermophiles and Its Application in Clostridium thermocellum
journal, July 2013


Works referencing / citing this record:

Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass
journal, January 2020

  • Mazzoli, Roberto
  • Biotechnology and Applied Biochemistry, Vol. 67, Issue 1
  • DOI: 10.1002/bab.1869

Enhanced ethanol production from lignocellulosic hydrolysates by inhibiting the hydrogen synthesis in Thermoanaerobacterium aotearoense SCUT27(Δ ldh )
journal, July 2019

  • Fu, Hongxin; Yang, Xitong; Qu, Chunyun
  • Journal of Chemical Technology & Biotechnology, Vol. 94, Issue 10
  • DOI: 10.1002/jctb.6141

Rex in Caldicellulosiruptor bescii : Novel regulon members and its effect on the production of ethanol and overflow metabolites
journal, April 2018

  • Sander, Kyle; Chung, Daehwan; Hyatt, Doug
  • MicrobiologyOpen, Vol. 8, Issue 2
  • DOI: 10.1002/mbo3.639

Engineering Clostridium for improved solvent production: recent progress and perspective
journal, May 2019

  • Cheng, Chi; Bao, Teng; Yang, Shang-Tian
  • Applied Microbiology and Biotechnology, Vol. 103, Issue 14
  • DOI: 10.1007/s00253-019-09916-7

Elimination of formate production in Clostridium thermocellum
journal, July 2015

  • Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 9
  • DOI: 10.1007/s10295-015-1644-3

Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability
journal, August 2018

  • Qi, Feng; Thakker, Chandresh; Zhu, Fayin
  • Journal of Industrial Microbiology & Biotechnology, Vol. 45, Issue 11
  • DOI: 10.1007/s10295-018-2068-7

Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides
journal, December 2016

  • Artzi, Lior; Bayer, Edward A.; Moraïs, Sarah
  • Nature Reviews Microbiology, Vol. 15, Issue 2
  • DOI: 10.1038/nrmicro.2016.164

Fuelling the future: microbial engineering for the production of sustainable biofuels
journal, March 2016

  • Liao, James C.; Mi, Luo; Pontrelli, Sammy
  • Nature Reviews Microbiology, Vol. 14, Issue 5
  • DOI: 10.1038/nrmicro.2016.32

Diverse hydrogen production and consumption pathways influence methane production in ruminants
journal, June 2019


Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells
journal, February 2017

  • Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43583

Engineering microbes for direct fermentation of cellulose to bioethanol
journal, February 2018


CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313
journal, August 2019

  • Ganguly, Joyshree; Martin‐Pascual, Maria; Kranenburg, Richard
  • Microbial Biotechnology, Vol. 13, Issue 2
  • DOI: 10.1111/1751-7915.13516

Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism
journal, June 2015

  • Lo, Jonathan; Zheng, Tianyong; Olson, Daniel G.
  • Journal of Bacteriology, Vol. 197, Issue 18
  • DOI: 10.1128/jb.00347-15

Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production
journal, May 2016


Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
journal, October 2017


Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum
journal, August 2015

  • Ravachol, Julie; Borne, Romain; Meynial-Salles, Isabelle
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0301-4

Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii
journal, October 2015


Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation
journal, December 2015

  • Sander, Kyle; Wilson, Charlotte M.; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0394-9

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
journal, June 2016


Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations
journal, May 2017


Expression of adhA from different organisms in Clostridium thermocellum
journal, November 2017


Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics
journal, April 2018

  • Whitham, Jason M.; Moon, Ji-Won; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-018-1095-y

The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam
journal, September 2018


Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production
journal, March 2020

  • Holwerda, Evert K.; Olson, Daniel G.; Ruppertsberger, Natalie M.
  • Biotechnology for Biofuels, Vol. 13, Issue 1
  • DOI: 10.1186/s13068-020-01680-5

The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824
journal, September 2019


Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing
journal, October 2017


Rex in Caldicellulosiruptor bescii : Novel regulon members and its effect on the production of ethanol and overflow metabolites
journal, April 2018

  • Sander, Kyle; Chung, Daehwan; Hyatt, Doug
  • MicrobiologyOpen, Vol. 8, Issue 2
  • DOI: 10.1002/mbo3.639

Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum
journal, February 2017

  • Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43355

Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells
journal, February 2017

  • Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43583

CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313
journal, August 2019

  • Ganguly, Joyshree; Martin‐Pascual, Maria; Kranenburg, Richard
  • Microbial Biotechnology, Vol. 13, Issue 2
  • DOI: 10.1111/1751-7915.13516

Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
journal, October 2017


Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii
journal, October 2015


Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
journal, June 2016


Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations
journal, May 2017


Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics
journal, April 2018

  • Whitham, Jason M.; Moon, Ji-Won; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-018-1095-y

The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam
journal, September 2018


Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production
journal, March 2020

  • Holwerda, Evert K.; Olson, Daniel G.; Ruppertsberger, Natalie M.
  • Biotechnology for Biofuels, Vol. 13, Issue 1
  • DOI: 10.1186/s13068-020-01680-5

The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824
journal, September 2019


Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing
journal, October 2017