DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Error and uncertainty in Raman thermal conductivity measurements

Abstract

We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materials under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.

Authors:
;  [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Georgia Inst. of Technology, Atlanta, GA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1185029
Alternate Identifier(s):
OSTI ID: 1228149
Report Number(s):
SAND-2014-20695J
Journal ID: ISSN 0034-6748; 553932
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 86; Journal Issue: 4; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; thermal conductivity; temperature measurement; error analysis; thermal models; graphene

Citation Formats

Thomas Edwin Beechem, Yates, Luke, and Graham, Samuel. Error and uncertainty in Raman thermal conductivity measurements. United States: N. p., 2015. Web. doi:10.1063/1.4918623.
Thomas Edwin Beechem, Yates, Luke, & Graham, Samuel. Error and uncertainty in Raman thermal conductivity measurements. United States. https://doi.org/10.1063/1.4918623
Thomas Edwin Beechem, Yates, Luke, and Graham, Samuel. Wed . "Error and uncertainty in Raman thermal conductivity measurements". United States. https://doi.org/10.1063/1.4918623. https://www.osti.gov/servlets/purl/1185029.
@article{osti_1185029,
title = {Error and uncertainty in Raman thermal conductivity measurements},
author = {Thomas Edwin Beechem and Yates, Luke and Graham, Samuel},
abstractNote = {We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materials under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.},
doi = {10.1063/1.4918623},
journal = {Review of Scientific Instruments},
number = 4,
volume = 86,
place = {United States},
year = {Wed Apr 22 00:00:00 EDT 2015},
month = {Wed Apr 22 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy
journal, December 2013

  • Yan, Rusen; Simpson, Jeffrey R.; Bertolazzi, Simone
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405826k

Assessment of stress contributions in GaN high electron mobility transistors of differing substrates using Raman spectroscopy
journal, December 2009

  • Beechem, Thomas; Christensen, Adam; Green, D. S.
  • Journal of Applied Physics, Vol. 106, Issue 11
  • DOI: 10.1063/1.3267157

Temperature amplification during laser heating of polycrystalline silicon microcantilevers due to temperature-dependent optical properties
journal, April 2009


Two-Dimensional Phonon Transport in Supported Graphene
journal, April 2010


Thermal conductivity measurement from 30 to 750 K: the 3ω method
journal, February 1990

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 61, Issue 2
  • DOI: 10.1063/1.1141498

Measurement of porous silicon thermal conductivity by micro-Raman scattering
journal, October 1999

  • Périchon, S.; Lysenko, V.; Remaki, B.
  • Journal of Applied Physics, Vol. 86, Issue 8
  • DOI: 10.1063/1.371424

Mean Free Path Effects on the Experimentally Measured Thermal Conductivity of Single-Crystal Silicon Microbridges
journal, July 2013

  • English, Timothy S.; Phinney, Leslie M.; Hopkins, Patrick E.
  • Journal of Heat Transfer, Vol. 135, Issue 9
  • DOI: 10.1115/1.4024357

Controlled ripple texturing of suspended graphene and ultrathin graphite membranes
journal, July 2009


Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
journal, July 2009


Thermal Conductivity of Graphene in Corbino Membrane Geometry
journal, March 2010

  • Faugeras, Clement; Faugeras, Blaise; Orlita, Milan
  • ACS Nano, Vol. 4, Issue 4
  • DOI: 10.1021/nn9016229

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Micro-Raman thermometry in the presence of complex stresses in GaN devices
journal, June 2008

  • Beechem, T.; Christensen, A.; Graham, S.
  • Journal of Applied Physics, Vol. 103, Issue 12
  • DOI: 10.1063/1.2940131

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Measurement of In-Plane Thermal Conductivity of Ultrathin Films Using Micro-Raman Spectroscopy
journal, April 2014

  • Luo, Zhe; Liu, Han; Spann, Bryan T.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 18, Issue 2
  • DOI: 10.1080/15567265.2014.892553

Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy
journal, June 2007

  • Beechem, Thomas; Graham, Samuel; Kearney, Sean P.
  • Review of Scientific Instruments, Vol. 78, Issue 6
  • DOI: 10.1063/1.2738946

Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating
journal, December 2010

  • Soini, Martin; Zardo, Ilaria; Uccelli, Emanuele
  • Applied Physics Letters, Vol. 97, Issue 26
  • DOI: 10.1063/1.3532848

Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
journal, May 2010

  • Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu
  • Nano Letters, Vol. 10, Issue 5, p. 1645-1651
  • DOI: 10.1021/nl9041966

Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments
journal, December 2010

  • Chen, Shanshan; Moore, Arden L.; Cai, Weiwei
  • ACS Nano, Vol. 5, Issue 1
  • DOI: 10.1021/nn102915x

Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy
journal, January 2003

  • Kuball, M.; Rajasingam, S.; Sarua, A.
  • Applied Physics Letters, Vol. 82, Issue 1
  • DOI: 10.1063/1.1534935

Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits
journal, February 1996


Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles
journal, February 2009

  • Hsu, I-Kai; Pettes, Michael T.; Bushmaker, Adam
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl802737q

Strain effects on optical phonons in 〈111〉 GaAs layers analyzed by Raman scattering
journal, November 1997

  • Puech, Pascal; Landa, Georges; Carles, Robert
  • Journal of Applied Physics, Vol. 82, Issue 9
  • DOI: 10.1063/1.366182

Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite
journal, October 2010

  • Jang, Wanyoung; Chen, Zhen; Bao, Wenzhong
  • Nano Letters, Vol. 10, Issue 10, p. 3909-3913
  • DOI: 10.1021/nl101613u

Accurate experimental determination of the Poisson’s ratio of GaN using high-resolution x-ray diffraction
journal, July 2007

  • Moram, M. A.; Barber, Z. H.; Humphreys, C. J.
  • Journal of Applied Physics, Vol. 102, Issue 2
  • DOI: 10.1063/1.2749484

Brillouin scattering study of bulk GaN
journal, June 1999

  • Yamaguchi, M.; Yagi, T.; Sota, T.
  • Journal of Applied Physics, Vol. 85, Issue 12
  • DOI: 10.1063/1.370635

Photoluminescence, Thermal Transport, and Breakdown in Joule-Heated GaN Nanowires
journal, January 2009

  • Westover, Tyler; Jones, Reese; Huang, J. Y.
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl802840w

A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry
journal, March 2014

  • Reparaz, J. S.; Chavez-Angel, E.; Wagner, M. R.
  • Review of Scientific Instruments, Vol. 85, Issue 3
  • DOI: 10.1063/1.4867166

Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS 2
journal, April 2013

  • Sahoo, Satyaprakash; Gaur, Anand P. S.; Ahmadi, Majid
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp402509w

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors
journal, March 2009

  • Koh, Yee Kan; Singer, Suzanne L.; Kim, Woochul
  • Journal of Applied Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.3078808

Single element Raman thermometry
journal, June 2013

  • Saltonstall, Christopher B.; Serrano, Justin; Norris, Pamela M.
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4810850

Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
journal, March 2009


Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
journal, February 2011


Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems
journal, August 2000


Structural Defects and Their Relationship to Nucleation of Gan Thin Films
journal, January 1996

  • Gian, Weida; Skowronski, Marek; Rohrer, Greg S.
  • MRS Proceedings, Vol. 423
  • DOI: 10.1557/PROC-423-475

High-Resolution Raman Temperature Measurements in GaAs p-HEMT Multifinger Devices
journal, August 2007

  • Sarua, A.; Bullen, A.; Haynes, M. .
  • IEEE Transactions on Electron Devices, Vol. 54, Issue 8
  • DOI: 10.1109/TED.2007.901349

Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation
journal, May 2009


Thermal conductance of interfaces between highly dissimilar materials
journal, April 2006


Temperature Dependent Raman Studies and Thermal Conductivity of Few Layer MoS2
text, January 2013


Works referencing / citing this record:

An electrical thermometry platform for measuring cross-plane thermal conductivity of 2D flakes on substrate
journal, September 2019

  • Hua, Yu-Chao; Xing, Lei; Jiao, Li-Ying
  • Applied Physics Letters, Vol. 115, Issue 12
  • DOI: 10.1063/1.5118003

Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS 2 : 2.4 to 37.8 nm
journal, January 2018

  • Yuan, Pengyu; Wang, Ridong; Wang, Tianyu
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 40
  • DOI: 10.1039/c8cp02858c

Determination of thermal conductivity using micro‐Raman spectroscopy with a three‐dimensional heating model
journal, August 2019

  • Cao, Fangcheng; He, Zhen
  • Journal of Raman Spectroscopy, Vol. 50, Issue 12
  • DOI: 10.1002/jrs.5725

Thermal conductivity of MoS 2 monolayers from molecular dynamics simulations
journal, March 2019

  • Krishnamoorthy, Aravind; Rajak, Pankaj; Norouzzadeh, Payam
  • AIP Advances, Vol. 9, Issue 3
  • DOI: 10.1063/1.5085336