skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High rate and stable cycling of lithium metal anode

Abstract

Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stabilitymore » of other electrochemical systems.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Joint Center for Energy Storage Research; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy & Environment Directorate
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy & Environment Directorate
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  4. U.S. Army Research Lab., Adelphi, MD (United States). Sensor & Electron Devices Directorate
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1184948
Report Number(s):
PNNL-SA-107989
Journal ID: ISSN 2041-1723; 48379; 48316; KC0208010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Qian, Jiangfeng, Henderson, Wesley A., Xu, Wu, Bhattacharya, Priyanka, Engelhard, Mark H., Borodin, Oleg, and Zhang, Jiguang. High rate and stable cycling of lithium metal anode. United States: N. p., 2015. Web. doi:10.1038/ncomms7362.
Qian, Jiangfeng, Henderson, Wesley A., Xu, Wu, Bhattacharya, Priyanka, Engelhard, Mark H., Borodin, Oleg, & Zhang, Jiguang. High rate and stable cycling of lithium metal anode. United States. doi:10.1038/ncomms7362.
Qian, Jiangfeng, Henderson, Wesley A., Xu, Wu, Bhattacharya, Priyanka, Engelhard, Mark H., Borodin, Oleg, and Zhang, Jiguang. Fri . "High rate and stable cycling of lithium metal anode". United States. doi:10.1038/ncomms7362. https://www.osti.gov/servlets/purl/1184948.
@article{osti_1184948,
title = {High rate and stable cycling of lithium metal anode},
author = {Qian, Jiangfeng and Henderson, Wesley A. and Xu, Wu and Bhattacharya, Priyanka and Engelhard, Mark H. and Borodin, Oleg and Zhang, Jiguang},
abstractNote = {Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.},
doi = {10.1038/ncomms7362},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 249 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

Carbon materials for lithium-ion rechargeable batteries
journal, February 1999


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries
journal, January 1995

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 142, Issue 9
  • DOI: 10.1149/1.2048658

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Suppression of dendritic lithium formation by using concentrated electrolyte solutions
journal, April 2008


Sulfamides and Glymes as Aprotic Solvents for Lithium Batteries
journal, January 1998

  • Choquette, Yves
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838834

Glyme−Lithium Salt Phase Behavior
journal, July 2006

  • Henderson, Wesley A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061516t

Glyme−Lithium Bis(trifluoromethanesulfonyl)imide and Glyme−Lithium Bis(perfluoroethanesulfonyl)imide Phase Behavior and Solvate Structures
journal, April 2005

  • Henderson, Wesley A.; McKenna, Fred; Khan, Masood A.
  • Chemistry of Materials, Vol. 17, Issue 9
  • DOI: 10.1021/cm047881j

Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials
journal, January 2004

  • Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1635384

Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes
journal, August 2011

  • Yoshida, Kazuki; Nakamura, Megumi; Kazue, Yuichi
  • Journal of the American Chemical Society, Vol. 133, Issue 33, p. 13121-13129
  • DOI: 10.1021/ja203983r

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte
journal, June 2013


A superconcentrated ether electrolyte for fast-charging Li-ion batteries
journal, January 2013

  • Yamada, Yuki; Yaegashi, Makoto; Abe, Takeshi
  • Chemical Communications, Vol. 49, Issue 95, p. 11194-11196
  • DOI: 10.1039/c3cc46665e

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms
journal, January 2014

  • McOwen, Dennis W.; Seo, Daniel M.; Borodin, Oleg
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42351D

A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte
journal, July 2014

  • Okuoka, Shin-ichi; Ogasawara, Yoshiyuki; Suga, Yosuke
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05684

Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
journal, December 2014


Morphological Transitions on Lithium Metal Anodes
journal, January 2009

  • López, Carmen M.; Vaughey, John T.; Dees, Dennis W.
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3158548

Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3793

Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents
journal, January 2011

  • Li, Lifei; Zhou, Sisi; Han, Hongbo
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3514705

Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology
journal, January 2010

  • Best, A. S.; Bhatt, A. I.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3429886

Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF 6 Electrolyte near Graphite Surface as a Function of Electrode Potential
journal, December 2011

  • Vatamanu, Jenel; Borodin, Oleg; Smith, Grant D.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp2101539

Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties
journal, January 2013

  • Seo, Daniel M.; Borodin, Oleg; Balogh, Daniel
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.018308jes

Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte
journal, June 2014

  • Sodeyama, Keitaro; Yamada, Yuki; Aikawa, Koharu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 26, p. 14091-14097
  • DOI: 10.1021/jp501178n

Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids
journal, August 2009

  • Borodin, Oleg
  • The Journal of Physical Chemistry B, Vol. 113, Issue 33
  • DOI: 10.1021/jp905220k

Molecular Dynamics Simulation and Pulsed-Field Gradient NMR Studies of Bis(fluorosulfonyl)imide (FSI) and Bis[(trifluoromethyl)sulfonyl]imide (TFSI)-Based Ionic Liquids
journal, May 2010

  • Borodin, Oleg; Gorecki, W.; Smith, Grant D.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 20
  • DOI: 10.1021/jp911950q

Electrolyte Solvation and Ionic Association: V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures
journal, January 2014

  • Han, Sang-Don; Borodin, Oleg; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0101414jes

In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

    Works referencing / citing this record:

    Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    journal, July 2018


    Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries
    journal, January 2019

    • Zhao, Qiang; Hao, Xiaoge; Su, Shiming
    • Journal of Materials Chemistry A, Vol. 7, Issue 26
    • DOI: 10.1039/c9ta04240g

    Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes
    journal, January 2019

    • Kondou, Shinji; Thomas, Morgan L.; Mandai, Toshihiko
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 9
    • DOI: 10.1039/c9cp00425d

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    A Hybrid Anion for Ionic Liquid and Battery Electrolyte Applications: Half Triflamide, Half Carbonate
    journal, February 2019

    • Gunderson-Briggs, Kaitlyn E.; Rüther, Thomas; Best, Adam S.
    • Angewandte Chemie International Edition, Vol. 58, Issue 13
    • DOI: 10.1002/anie.201813091

    Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
    journal, July 2018


    Polymer‐in‐“Quasi‐Ionic Liquid” Electrolytes for High‐Voltage Lithium Metal Batteries
    journal, September 2019

    • Wu, Haiping; Xu, Yaobin; Ren, Xiaodi
    • Advanced Energy Materials, Vol. 9, Issue 41
    • DOI: 10.1002/aenm.201902108

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    Fluor und Lithium: Ideale Partner für Elektrolyte in wiederaufladbaren Hochleistungsbatterien
    journal, July 2019

    • Aspern, N.; Röschenthaler, G. ‐V.; Winter, M.
    • Angewandte Chemie, Vol. 131, Issue 45
    • DOI: 10.1002/ange.201901381

    High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    journal, March 2018


    Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries
    journal, January 2019

    • Koo, Dongho; Kwon, Bomee; Lee, Jeonghyeop
    • Chemical Communications, Vol. 55, Issue 65
    • DOI: 10.1039/c9cc04082j

    Polymer‐in‐“Quasi‐Ionic Liquid” Electrolytes for High‐Voltage Lithium Metal Batteries
    journal, September 2019

    • Wu, Haiping; Xu, Yaobin; Ren, Xiaodi
    • Advanced Energy Materials, Vol. 9, Issue 41
    • DOI: 10.1002/aenm.201902108

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    Fluor und Lithium: Ideale Partner für Elektrolyte in wiederaufladbaren Hochleistungsbatterien
    journal, July 2019

    • Aspern, N.; Röschenthaler, G. ‐V.; Winter, M.
    • Angewandte Chemie, Vol. 131, Issue 45
    • DOI: 10.1002/ange.201901381

    A Hybrid Anion for Ionic Liquid and Battery Electrolyte Applications: Half Triflamide, Half Carbonate
    journal, February 2019

    • Gunderson-Briggs, Kaitlyn E.; Rüther, Thomas; Best, Adam S.
    • Angewandte Chemie International Edition, Vol. 58, Issue 13
    • DOI: 10.1002/anie.201813091

    High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    journal, March 2018


    Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
    journal, July 2018


    Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    journal, July 2018


    Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide
    journal, January 2018

    • Shimizu, Masahiro; Umeki, Makoto; Arai, Susumu
    • Physical Chemistry Chemical Physics, Vol. 20, Issue 2
    • DOI: 10.1039/c7cp06057b

    Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries
    journal, January 2019

    • Koo, Dongho; Kwon, Bomee; Lee, Jeonghyeop
    • Chemical Communications, Vol. 55, Issue 65
    • DOI: 10.1039/c9cc04082j

    Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes
    journal, January 2019

    • Kondou, Shinji; Thomas, Morgan L.; Mandai, Toshihiko
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 9
    • DOI: 10.1039/c9cp00425d

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries
    journal, January 2019

    • Zhao, Qiang; Hao, Xiaoge; Su, Shiming
    • Journal of Materials Chemistry A, Vol. 7, Issue 26
    • DOI: 10.1039/c9ta04240g

    Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation
    journal, March 2020


    Review—Li Metal Anode in Working Lithium-Sulfur Batteries
    journal, June 2017

    • Cheng, Xin-Bing; Huang, Jia-Qi; Zhang, Qiang
    • Journal of The Electrochemical Society, Vol. 165, Issue 1
    • DOI: 10.1149/2.0111801jes

    Anode-Free Rechargeable Lithium Metal Batteries
    journal, August 2016

    • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
    • Advanced Functional Materials, Vol. 26, Issue 39
    • DOI: 10.1002/adfm.201602353

    Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
    journal, May 2017

    • Chi, Shang-Sen; Liu, Yongchang; Song, Wei-Li
    • Advanced Functional Materials, Vol. 27, Issue 24
    • DOI: 10.1002/adfm.201700348

    Materials and Device Constructions for Aqueous Lithium-Sulfur Batteries
    journal, March 2018

    • Yun, Sol; Park, So Hyun; Yeon, Jeong Seok
    • Advanced Functional Materials, Vol. 28, Issue 38
    • DOI: 10.1002/adfm.201707593

    Iron Fluoride-Carbon Nanocomposite Nanofibers as Free-Standing Cathodes for High-Energy Lithium Batteries
    journal, June 2018

    • Fu, Wenbin; Zhao, Enbo; Sun, Zifei
    • Advanced Functional Materials, Vol. 28, Issue 32
    • DOI: 10.1002/adfm.201801711

    Pseudocapacitance Induced Uniform Plating/Stripping of Li Metal Anode in Vertical Graphene Nanowalls
    journal, October 2018

    • Ren, Feihong; Lu, Ziyu; Zhang, Huan
    • Advanced Functional Materials, Vol. 28, Issue 50
    • DOI: 10.1002/adfm.201805638

    Ceramic–Salt Composite Electrolytes from Cold Sintering
    journal, April 2019

    • Lee, Wonho; Lyon, Christopher K.; Seo, Joo‐Hwan
    • Advanced Functional Materials, Vol. 29, Issue 20
    • DOI: 10.1002/adfm.201807872

    Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium–Sulfur Batteries
    journal, July 2019

    • Wang, Xiaofei; Qian, Yumin; Wang, Lina
    • Advanced Functional Materials, Vol. 29, Issue 39
    • DOI: 10.1002/adfm.201902929

    Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
    journal, January 2016

    • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
    • Advanced Materials, Vol. 28, Issue 11
    • DOI: 10.1002/adma.201504117

    Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
    journal, February 2016

    • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
    • Advanced Materials, Vol. 28, Issue 15
    • DOI: 10.1002/adma.201506124

    Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte
    journal, February 2017


    A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density
    journal, April 2018


    Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance
    journal, July 2018


    Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
    journal, January 2019


    Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in High‐Areal‐Density Lithium‐Ion Batteries
    journal, February 2019

    • Zhang, Miao; Xiang, Lei; Galluzzi, Massimiliano
    • Advanced Materials, Vol. 31, Issue 18
    • DOI: 10.1002/adma.201900826

    Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithium‐Metal Batteries
    journal, May 2019

    • Yoo, Dong‐Joo; Elabd, Ahmed; Choi, Sunghun
    • Advanced Materials, Vol. 31, Issue 29
    • DOI: 10.1002/adma.201901645

    Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries
    journal, October 2019


    A Review of Solid Electrolyte Interphases on Lithium Metal Anode
    journal, November 2015


    A Sulfur Cathode with Pomegranate-Like Cluster Structure
    journal, May 2015

    • Li, Weiyang; Liang, Zheng; Lu, Zhenda
    • Advanced Energy Materials, Vol. 5, Issue 16
    • DOI: 10.1002/aenm.201500211

    SiO 2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life
    journal, January 2016

    • Zhou, Dong; Liu, Ruliang; He, Yan-Bing
    • Advanced Energy Materials, Vol. 6, Issue 7
    • DOI: 10.1002/aenm.201502214

    Review on High-Loading and High-Energy Lithium-Sulfur Batteries
    journal, May 2017

    • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
    • Advanced Energy Materials, Vol. 7, Issue 24
    • DOI: 10.1002/aenm.201700260

    Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes
    journal, November 2017

    • Yoon, Hyeon Ji; Kim, Na Rae; Jin, Hyoung-Joon
    • Advanced Energy Materials, Vol. 8, Issue 6
    • DOI: 10.1002/aenm.201701261

    Dendrite-Free and Performance-Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives
    journal, February 2018

    • Li, Xing; Zheng, Jianming; Ren, Xiaodi
    • Advanced Energy Materials, Vol. 8, Issue 15
    • DOI: 10.1002/aenm.201703022

    Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte
    journal, July 2018

    • Mackanic, David G.; Michaels, Wesley; Lee, Minah
    • Advanced Energy Materials, Vol. 8, Issue 25
    • DOI: 10.1002/aenm.201800703

    High‐Performance Silicon Anodes Enabled By Nonflammable Localized High‐Concentration Electrolytes
    journal, July 2019

    • Jia, Haiping; Zou, Lianfeng; Gao, Peiyuan
    • Advanced Energy Materials, Vol. 9, Issue 31
    • DOI: 10.1002/aenm.201900784

    Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays
    journal, November 2019

    • Tantratian, Karnpiwat; Cao, Daxian; Abdelaziz, Ahmed
    • Advanced Energy Materials, Vol. 10, Issue 5
    • DOI: 10.1002/aenm.201902819

    The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes
    journal, December 2018


    Active‐Oxygen‐Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide
    journal, February 2019


    Self‐Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries
    journal, October 2019


    A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions
    journal, January 2020


    Columnar Lithium Metal Anodes
    journal, September 2017

    • Zhang, Xue-Qiang; Chen, Xiang; Xu, Rui
    • Angewandte Chemie International Edition, Vol. 56, Issue 45
    • DOI: 10.1002/anie.201707093

    A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
    journal, January 2018

    • Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia
    • Angewandte Chemie International Edition, Vol. 57, Issue 6
    • DOI: 10.1002/anie.201710806

    A Versatile Halide Ester Enabling Li‐Anode Stability and a High Rate Capability in Lithium–Oxygen Batteries
    journal, February 2019

    • Wang, Di; Zhang, Fan; He, Ping
    • Angewandte Chemie International Edition, Vol. 58, Issue 8
    • DOI: 10.1002/anie.201813009

    Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities
    journal, November 2019

    • He, Guang; Li, Qingwen; Shen, Yongli
    • Angewandte Chemie International Edition, Vol. 58, Issue 51
    • DOI: 10.1002/anie.201911800

    Stable Performance of Aluminum-Metal Battery by Incorporating Lithium-Ion Chemistry
    journal, May 2017


    Sulfur‐Rich Molybdenum Sulfide as an Anode Coating to Improve Performance of Lithium Metal Batteries
    journal, December 2019

    • Meyerson, Melissa L.; Pandit, Anish H.; Weeks, Jason A.
    • ChemElectroChem, Vol. 7, Issue 1
    • DOI: 10.1002/celc.201902007

    Mesoporous Carbon Nanofibers Embedded with MoS 2 Nanocrystals for Extraordinary Li-Ion Storage
    journal, October 2015

    • Hu, Shan; Chen, Wen; Uchaker, Evan
    • Chemistry - A European Journal, Vol. 21, Issue 50
    • DOI: 10.1002/chem.201503356

    Hybrid Solid Polymer Electrolytes with Two‐Dimensional Inorganic Nanofillers
    journal, June 2018

    • Chua, Stephanie; Fang, Ruopian; Sun, Zhenhua
    • Chemistry – A European Journal, Vol. 24, Issue 69
    • DOI: 10.1002/chem.201804781

    The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte
    journal, May 2018


    Ionic liquids and their solid-state analogues as materials for energy generation and storage
    journal, January 2016

    • MacFarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.
    • Nature Reviews Materials, Vol. 1, Issue 2
    • DOI: 10.1038/natrevmats.2015.5

    A reversible dendrite-free high-areal-capacity lithium metal electrode
    journal, April 2017

    • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/ncomms15106

    Promises and challenges of nanomaterials for lithium-based rechargeable batteries
    journal, June 2016


    Making Li-metal electrodes rechargeable by controlling the dendrite growth direction
    journal, June 2017


    Reviving the lithium metal anode for high-energy batteries
    journal, March 2017

    • Lin, Dingchang; Liu, Yayuan; Cui, Yi
    • Nature Nanotechnology, Vol. 12, Issue 3
    • DOI: 10.1038/nnano.2017.16

    Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
    journal, September 2018


    Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
    journal, September 2018


    Aligning academia and industry for unified battery performance metrics
    journal, December 2018


    Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
    journal, March 2019


    Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S
    journal, January 2015

    • Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik
    • Energy & Environmental Science, Vol. 8, Issue 7
    • DOI: 10.1039/c5ee01215e

    Transition of lithium growth mechanisms in liquid electrolytes
    journal, January 2016

    • Bai, Peng; Li, Ju; Brushett, Fikile R.
    • Energy & Environmental Science, Vol. 9, Issue 10
    • DOI: 10.1039/c6ee01674j

    A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries
    journal, January 2017

    • Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
    • Chemical Society Reviews, Vol. 46, Issue 17
    • DOI: 10.1039/c7cs00139h

    A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries
    journal, January 2018

    • Shi, Pengcheng; Zheng, Hao; Liang, Xin
    • Chemical Communications, Vol. 54, Issue 35
    • DOI: 10.1039/c8cc00994e

    Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes
    journal, January 2018

    • Kautz, David J.; Tao, Lei; Mu, Linqin
    • Journal of Materials Chemistry A, Vol. 6, Issue 33
    • DOI: 10.1039/c8ta01715h

    Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries
    journal, January 2019

    • Bae, Jiwoong; Qian, Yumin; Li, Yutao
    • Energy & Environmental Science, Vol. 12, Issue 11
    • DOI: 10.1039/c9ee02558h

    Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
    journal, September 2017


    Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
    journal, December 2018


    Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries
    journal, January 2019

    • Beyene, Tamene Tadesse; Bezabh, Hailemariam Kassa; Weret, Misganaw Adigo
    • Journal of The Electrochemical Society, Vol. 166, Issue 8
    • DOI: 10.1149/2.0731908jes

    Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes
    journal, December 2015

    • Trask, Stephen E.; Pupek, Krzysztof Z.; Gilbert, James A.
    • Journal of The Electrochemical Society, Vol. 163, Issue 3
    • DOI: 10.1149/2.0981602jes

    Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption
    journal, January 2019

    • Weber, Rochelle; Cheng, Ju-Hsiang; Louli, A. J.
    • Journal of The Electrochemical Society, Vol. 166, Issue 14
    • DOI: 10.1149/2.1181913jes