skip to main content


Title: Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formation than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phononmore » modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less
 [1] ;  [2] ;  [3] ;  [1] ;  [4] ;  [2] ;  [4] ;  [4] ;  [3] ;  [1]
  1. Columbia Univ., New York, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. SUNY Polytechnic Inst., Albany, NY (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Report Number(s):
BNL-108132-2015-JA; PNNL-SA-108633
Journal ID: ISSN 2159-3930
Grant/Contract Number:
AC02-98CH10886; SC00112704; AC05-76RL01830
Accepted Manuscript
Journal Name:
Optical Materials Express
Additional Journal Information:
Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2159-3930
Optical Society of America (OSA)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; Environmental Molecular Sciences Laboratory
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1188278; OSTI ID: 1208734