skip to main content

DOE PAGESDOE PAGES

Title: First high-convergence cryogenic implosion in a near-vacuum hohlraum

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] more »;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [4] ;  [3] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [1] ;  [5] ;  [5] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [1] ;  [5] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [6] ;  [3] ;  [7] ;  [1] ;  [1] ;  [5] ;  [1] ;  [1] ;  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
  5. General Atomics, San Diego, CA (United States)
  6. Diamond Materials, GMBH, Freiburg (Germany)
  7. Diamond Materials, GMBH, Frieburg (Germany)
Publication Date:
Report Number(s):
LLNL-JRNL-666122
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:
NA0001857; AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 114; Journal Issue: 17; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Massachusetts Institute of Technology, Cambridge, MA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1182659
Alternate Identifier(s):
OSTI ID: 1180249; OSTI ID: 1251027

Berzak Hopkins, L.  F., Meezan, N.  B., Le Pape, S., Divol, L., Mackinnon, A.  J., Ho, D.  D., Hohenberger, M., Jones, O.  S., Kyrala, G., Milovich, J.  L., Pak, A., Ralph, J.  E., Ross, J.  S., Benedetti, L.  R., Biener, J., Bionta, R., Bond, E., Bradley, D., Caggiano, J., Callahan, D., Cerjan, C., Church, J., Clark, D., Döppner, T., Dylla-Spears, R., Eckart, M., Edgell, D., Field, J., Fittinghoff, D.  N., Gatu Johnson, M., Grim, G., Guler, N., Haan, S., Hamza, A., Hartouni, E.  P., Hatarik, R., Herrmann, H.  W., Hinkel, D., Hoover, D., Huang, H., Izumi, N., Khan, S., Kozioziemski, B., Kroll, J., Ma, T., MacPhee, A., McNaney, J., Merrill, F., Moody, J., Nikroo, A., Patel, P., Robey, H.  F., Rygg, J.  R., Sater, J., Sayre, D., Schneider, M., Sepke, S., Stadermann, M., Stoeffl, W., Thomas, C., Town, R.  P. J., Volegov, P.  L., Wild, C., Wilde, C., Woerner, E., Yeamans, C., Yoxall, B., Kilkenny, J., Landen, O.  L., Hsing, W., and Edwards, M.  J.. First high-convergence cryogenic implosion in a near-vacuum hohlraum. United States: N. p., Web. doi:10.1103/PhysRevLett.114.175001.
Berzak Hopkins, L.  F., Meezan, N.  B., Le Pape, S., Divol, L., Mackinnon, A.  J., Ho, D.  D., Hohenberger, M., Jones, O.  S., Kyrala, G., Milovich, J.  L., Pak, A., Ralph, J.  E., Ross, J.  S., Benedetti, L.  R., Biener, J., Bionta, R., Bond, E., Bradley, D., Caggiano, J., Callahan, D., Cerjan, C., Church, J., Clark, D., Döppner, T., Dylla-Spears, R., Eckart, M., Edgell, D., Field, J., Fittinghoff, D.  N., Gatu Johnson, M., Grim, G., Guler, N., Haan, S., Hamza, A., Hartouni, E.  P., Hatarik, R., Herrmann, H.  W., Hinkel, D., Hoover, D., Huang, H., Izumi, N., Khan, S., Kozioziemski, B., Kroll, J., Ma, T., MacPhee, A., McNaney, J., Merrill, F., Moody, J., Nikroo, A., Patel, P., Robey, H.  F., Rygg, J.  R., Sater, J., Sayre, D., Schneider, M., Sepke, S., Stadermann, M., Stoeffl, W., Thomas, C., Town, R.  P. J., Volegov, P.  L., Wild, C., Wilde, C., Woerner, E., Yeamans, C., Yoxall, B., Kilkenny, J., Landen, O.  L., Hsing, W., & Edwards, M.  J.. First high-convergence cryogenic implosion in a near-vacuum hohlraum. United States. doi:10.1103/PhysRevLett.114.175001.
Berzak Hopkins, L.  F., Meezan, N.  B., Le Pape, S., Divol, L., Mackinnon, A.  J., Ho, D.  D., Hohenberger, M., Jones, O.  S., Kyrala, G., Milovich, J.  L., Pak, A., Ralph, J.  E., Ross, J.  S., Benedetti, L.  R., Biener, J., Bionta, R., Bond, E., Bradley, D., Caggiano, J., Callahan, D., Cerjan, C., Church, J., Clark, D., Döppner, T., Dylla-Spears, R., Eckart, M., Edgell, D., Field, J., Fittinghoff, D.  N., Gatu Johnson, M., Grim, G., Guler, N., Haan, S., Hamza, A., Hartouni, E.  P., Hatarik, R., Herrmann, H.  W., Hinkel, D., Hoover, D., Huang, H., Izumi, N., Khan, S., Kozioziemski, B., Kroll, J., Ma, T., MacPhee, A., McNaney, J., Merrill, F., Moody, J., Nikroo, A., Patel, P., Robey, H.  F., Rygg, J.  R., Sater, J., Sayre, D., Schneider, M., Sepke, S., Stadermann, M., Stoeffl, W., Thomas, C., Town, R.  P. J., Volegov, P.  L., Wild, C., Wilde, C., Woerner, E., Yeamans, C., Yoxall, B., Kilkenny, J., Landen, O.  L., Hsing, W., and Edwards, M.  J.. 2015. "First high-convergence cryogenic implosion in a near-vacuum hohlraum". United States. doi:10.1103/PhysRevLett.114.175001. https://www.osti.gov/servlets/purl/1182659.
@article{osti_1182659,
title = {First high-convergence cryogenic implosion in a near-vacuum hohlraum},
author = {Berzak Hopkins, L.  F. and Meezan, N.  B. and Le Pape, S. and Divol, L. and Mackinnon, A.  J. and Ho, D.  D. and Hohenberger, M. and Jones, O.  S. and Kyrala, G. and Milovich, J.  L. and Pak, A. and Ralph, J.  E. and Ross, J.  S. and Benedetti, L.  R. and Biener, J. and Bionta, R. and Bond, E. and Bradley, D. and Caggiano, J. and Callahan, D. and Cerjan, C. and Church, J. and Clark, D. and Döppner, T. and Dylla-Spears, R. and Eckart, M. and Edgell, D. and Field, J. and Fittinghoff, D.  N. and Gatu Johnson, M. and Grim, G. and Guler, N. and Haan, S. and Hamza, A. and Hartouni, E.  P. and Hatarik, R. and Herrmann, H.  W. and Hinkel, D. and Hoover, D. and Huang, H. and Izumi, N. and Khan, S. and Kozioziemski, B. and Kroll, J. and Ma, T. and MacPhee, A. and McNaney, J. and Merrill, F. and Moody, J. and Nikroo, A. and Patel, P. and Robey, H.  F. and Rygg, J.  R. and Sater, J. and Sayre, D. and Schneider, M. and Sepke, S. and Stadermann, M. and Stoeffl, W. and Thomas, C. and Town, R.  P. J. and Volegov, P.  L. and Wild, C. and Wilde, C. and Woerner, E. and Yeamans, C. and Yoxall, B. and Kilkenny, J. and Landen, O.  L. and Hsing, W. and Edwards, M.  J.},
abstractNote = {Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.},
doi = {10.1103/PhysRevLett.114.175001},
journal = {Physical Review Letters},
number = 17,
volume = 114,
place = {United States},
year = {2015},
month = {4}
}