DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

Abstract

Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pKa value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turn leads to an elevated pKa value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBPmore » complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps indicated that H₂ heterolysis is the rate-determining step for both complexes. The presence of a pendent base in the 6DHBP complex was found to facilitate the rate-determining step, and renders 6DHBP a more effective catalyst for formate production.« less

Authors:
 [1];  [2];  [2];  [3];  [1];  [1];  [2];  [4]
  1. National Inst. of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki (Japan)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. National Inst. of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki (Japan); Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama (Japan); Univ. of Technology, Panjin (China)
  4. National Inst. of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki (Japan); Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama (Japan)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1182539
Report Number(s):
BNL-107640-2015-JA
Journal ID: ISSN 0276-7333; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 33; Journal Issue: 22; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Suna, Yuki, Fujita, Etsuko, Ertem, Mehmed Z., Wang, Wan-Hui, Kambayashi, Hide, Manaka, Yuichi, Muckerman, James T., and Himeda, Yuichiro. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes. United States: N. p., 2014. Web. doi:10.1021/om500832d.
Suna, Yuki, Fujita, Etsuko, Ertem, Mehmed Z., Wang, Wan-Hui, Kambayashi, Hide, Manaka, Yuichi, Muckerman, James T., & Himeda, Yuichiro. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes. United States. https://doi.org/10.1021/om500832d
Suna, Yuki, Fujita, Etsuko, Ertem, Mehmed Z., Wang, Wan-Hui, Kambayashi, Hide, Manaka, Yuichi, Muckerman, James T., and Himeda, Yuichiro. Wed . "Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes". United States. https://doi.org/10.1021/om500832d. https://www.osti.gov/servlets/purl/1182539.
@article{osti_1182539,
title = {Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes},
author = {Suna, Yuki and Fujita, Etsuko and Ertem, Mehmed Z. and Wang, Wan-Hui and Kambayashi, Hide and Manaka, Yuichi and Muckerman, James T. and Himeda, Yuichiro},
abstractNote = {Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pKa value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turn leads to an elevated pKa value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps indicated that H₂ heterolysis is the rate-determining step for both complexes. The presence of a pendent base in the 6DHBP complex was found to facilitate the rate-determining step, and renders 6DHBP a more effective catalyst for formate production.},
doi = {10.1021/om500832d},
journal = {Organometallics},
number = 22,
volume = 33,
place = {United States},
year = {2014},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Figures / Tables:

Scheme 1 Scheme 1: Acid/base equilibria of the [Cp*Ir(4DHBP)(OH2)]2+ complex.

Save / Share:

Works referenced in this record:

Creating Ligands with Multiple Personalities
journal, October 2010


Multifunctional ligands in transition metal catalysis
journal, January 2011


N–N Bond Cleavage of Hydrazines with a Multiproton-Responsive Pincer-Type Iron Complex
journal, April 2013

  • Umehara, Kazuki; Kuwata, Shigeki; Ikariya, Takao
  • Journal of the American Chemical Society, Vol. 135, Issue 18
  • DOI: 10.1021/ja3122944

6,6′-Dihydroxy terpyridine: a proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones
journal, January 2013

  • Moore, Cameron M.; Szymczak, Nathaniel K.
  • Chem. Commun., Vol. 49, Issue 4
  • DOI: 10.1039/C2CC36927C

Efficient Copper-Catalyzed Ullmann Reaction of Aryl Bromides with Imidazoles in Water Promoted by a pH-Responsive Ligand
journal, June 2013


Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand
journal, February 2012

  • Kawahara, Ryoko; Fujita, Ken-ichi; Yamaguchi, Ryohei
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja210857z

Structural, electronic and acid/base properties of [Ru(bpy(OH)2)3]2+ (bpy(OH)2 = 4,4′-dihydroxy-2,2′-bipyridine)
journal, January 2012

  • Fuentes, Michelle J.; Bognanno, Richard J.; Dougherty, William G.
  • Dalton Transactions, Vol. 41, Issue 40
  • DOI: 10.1039/c2dt31706k

Transfer Hydrogenation in Water via a Ruthenium Catalyst with OH Groups near the Metal Center on a bipy Scaffold
journal, December 2011

  • Nieto, Ismael; Livings, Michelle S.; Sacci, John B.
  • Organometallics, Vol. 30, Issue 23
  • DOI: 10.1021/om200638p

Structural, Electronic, and Acid/Base Properties of [Ru(bpy) 2 (bpy(OH) 2 )] 2+ (bpy = 2,2′-Bipyridine, bpy(OH) 2 = 4,4′-Dihydroxy-2,2′-bipyridine)
journal, April 2011

  • Klein, Samantha; Dougherty, William G.; Kassel, W. Scott
  • Inorganic Chemistry, Vol. 50, Issue 7
  • DOI: 10.1021/ic1017054

Polydentate Analogues of 8-Hydroxyquinoline and Their Complexes with Ruthenium
journal, November 2011

  • El Ojaimi, Maya; Thummel, Randolph P.
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic201524j

First metal complexes of 6,6′-dihydroxy-2,2′-bipyridine: from molecular wires to applications in carbonylation catalysis
journal, January 2011

  • Conifer, Christopher M.; Taylor, Russell A.; Law, David J.
  • Dalton Trans., Vol. 40, Issue 5
  • DOI: 10.1039/C0DT01526A

Anion-Exchange-Triggered 1,3-Shift of an NH Proton to Iridium in Protic N-Heterocyclic Carbenes: Hydrogen-Bonding and Ion-Pairing Effects
journal, December 2009

  • Song, Guoyong; Su, Yan; Periana, Roy A.
  • Angewandte Chemie International Edition, Vol. 49, Issue 5
  • DOI: 10.1002/anie.200905691

Acceleration of Nucleophilic CH Activation by Strongly Basic Solvents
journal, September 2010

  • Hashiguchi, Brian G.; Young, Kenneth J. H.; Yousufuddin, Muhammed
  • Journal of the American Chemical Society, Vol. 132, Issue 36
  • DOI: 10.1021/ja102518m

Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid−Base Equilibrium of Ligands for Conversion of Carbon Dioxide
journal, January 2007

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Organometallics, Vol. 26, Issue 3
  • DOI: 10.1021/om060899e

Highly efficient conversion of carbon dioxide catalyzed by half-sandwich complexes with pyridinol ligand: The electronic effect of oxyanion
journal, September 2006

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of Photochemistry and Photobiology A: Chemistry, Vol. 182, Issue 3
  • DOI: 10.1016/j.jphotochem.2006.04.025

Interconversion between Formic Acid and H2/CO2 using Rhodium and Ruthenium Catalysts for CO2 Fixation and H2 Storage
journal, January 2011


pH-Dependent Catalytic Activity and Chemoselectivity in Transfer Hydrogenation Catalyzed by Iridium Complex with 4,4′-Dihydroxy-2,2′-bipyridine
journal, December 2008

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Miyazawa, Satoru
  • Chemistry - A European Journal, Vol. 14, Issue 35
  • DOI: 10.1002/chem.200801568

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Recyclable Catalyst for Conversion of Carbon Dioxide into Formate Attributable to an Oxyanion on the Catalyst Ligand
journal, September 2005

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja054236k

A QM/MM Investigation of the Activation and Catalytic Mechanism of Fe-Only Hydrogenases
journal, July 2007

  • Greco, Claudio; Bruschi, Maurizio; De Gioia, Luca
  • Inorganic Chemistry, Vol. 46, Issue 15
  • DOI: 10.1021/ic062320a

Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination Upon Reduction of the Active Site of the Fe-Only Hydrogenase from Desulfovibrio d esulfuricans
journal, February 2001

  • Nicolet, Yvain; de Lacey, Antonio L.; Vernède, Xavier
  • Journal of the American Chemical Society, Vol. 123, Issue 8, p. 1596-1601
  • DOI: 10.1021/ja0020963

A Capable Bridging Ligand for Fe-Only Hydrogenase:  Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen
journal, April 2001

  • Fan, Hua-Jun; Hall, Michael B.
  • Journal of the American Chemical Society, Vol. 123, Issue 16
  • DOI: 10.1021/ja004120i

The NH Functional Group in Organometallic Catalysis
journal, March 2013

  • Zhao, Baoguo; Han, Zhaobin; Ding, Kuiling
  • Angewandte Chemie International Edition, Vol. 52, Issue 18
  • DOI: 10.1002/anie.201204921

Outer sphere hydrogenation catalysis
journal, January 2013

  • Eisenstein, Odile; Crabtree, Robert H.
  • New J. Chem., Vol. 37, Issue 1
  • DOI: 10.1039/C2NJ40659D

The roles of the first and second coordination spheres in the design of molecular catalysts for H 2 production and oxidation
journal, January 2009

  • Rakowski DuBois, M.; DuBois, Daniel L.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801197B

Highly Stereoselective Proton/Hydride Exchange: Assistance of Hydrogen Bonding for the Heterolytic Splitting of H 2
journal, December 2009

  • Friedrich, Anja; Drees, Markus; Schmedt auf der Günne, Jörn
  • Journal of the American Chemical Society, Vol. 131, Issue 48
  • DOI: 10.1021/ja908644n

Pendant Bases as Proton Relays in Iron Hydride and Dihydrogen Complexes
journal, March 2006

  • Henry, Renee M.; Shoemaker, Richard K.; DuBois, Daniel L.
  • Journal of the American Chemical Society, Vol. 128, Issue 9
  • DOI: 10.1021/ja057242p

Heterolytic dihydrogen activation in an iridium complex with a pendant basic group
journal, January 1999

  • Lee, Dong-Heon; Patel, Ben P.; Crabtree, Robert H.
  • Chemical Communications, Issue 3
  • DOI: 10.1039/a808601j

Switching On and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of [Ir{H(.eta.1-SC5H4NH)}2(PCy3)2]BF4.cntdot.2.7CH2Cl2
journal, September 1994

  • Lough, Alan J.; Park, Sunghan; Ramachandran, Ravindranath
  • Journal of the American Chemical Society, Vol. 116, Issue 18
  • DOI: 10.1021/ja00097a049

An Unusual Type of H.cntdot..cntdot..cntdot.H Interaction: Ir-H.cntdot..cntdot..cntdot.H-O and Ir-H.cntdot..cntdot..cntdot.H-N Hydrogen Bonding and Its Involvement in .sigma.-Bond Metathesis
journal, November 1994

  • Lee, Jesse C.; Peris, Eduardo; Rheingold, Arnold L.
  • Journal of the American Chemical Society, Vol. 116, Issue 24
  • DOI: 10.1021/ja00103a017

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Novel Seco Cyclopropa[ c ]pyrrolo[3,2- e ]indole Bisalkylators Bearing a 3,3‘-Arylenebisacryloyl Group as a Linker
journal, April 2001

  • Fukuda, Yasumichi; Seto, Shigeki; Furuta, Hirosuke
  • Journal of Medicinal Chemistry, Vol. 44, Issue 9
  • DOI: 10.1021/jm000107x

Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release
journal, January 2014


Mono- and di-nuclear ruthenium( II ) complexes of the ambidentate ligand 3,3′-dihydroxy-2,2′-bipyridine: spectroscopic, electrochemical and mixed-valence properties
journal, January 1996

  • Thompson, Alexander M. W. Cargill; Jeffery, John C.; Liard, Davina J.
  • J. Chem. Soc., Dalton Trans., Issue 6
  • DOI: 10.1039/DT9960000879

The coordination chemistry of 2-pyridone and its derivatives
journal, February 1995


Excited state proton transfer of ruthenium(II) complexes of 4,7-dihydroxy-1,10-phenanthroline. Increased acidity in the excited state
journal, October 1978

  • Giordano, Paul J.; Bock, C. Randolph; Wrighton, Mark S.
  • Journal of the American Chemical Society, Vol. 100, Issue 22
  • DOI: 10.1021/ja00490a032

pH-Dependent Transfer Hydrogenation of Ketones with HCOONa as a Hydrogen Donor Promoted by ( η 6 -C 6 Me 6 )Ru Complexes
journal, July 2002

  • Ogo, Seiji; Abura, Tsutomu; Watanabe, Yoshihito
  • Organometallics, Vol. 21, Issue 14
  • DOI: 10.1021/om011059x

ACIDITY MEASUREMENTS WITH THE GLASS ELECTRODE IN H 2 O-D 2 O MIXTURES
journal, May 1960

  • Mikkelsen, Kirsten; Nielsen, Sigurd Olaf
  • The Journal of Physical Chemistry, Vol. 64, Issue 5
  • DOI: 10.1021/j100834a026

Organometallic Half-Sandwich Iridium Anticancer Complexes
journal, April 2011

  • Liu, Zhe; Habtemariam, Abraha; Pizarro, Ana M.
  • Journal of Medicinal Chemistry, Vol. 54, Issue 8
  • DOI: 10.1021/jm2000932

Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation
journal, August 2013

  • DePasquale, Joseph; Nieto, Ismael; Reuther, Lauren E.
  • Inorganic Chemistry, Vol. 52, Issue 16
  • DOI: 10.1021/ic302448d

A formula for correlating p K a values determined in D 2 O and H 2 O
journal, January 2004


Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes
journal, October 2009

  • Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja903574e

Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions
journal, January 2004

  • Hayashi, Hideki; Ogo, Seiji; Fukuzumi, Shunichi
  • Chemical Communications, Issue 23
  • DOI: 10.1039/b411633j

Anthropogenic Chemical Carbon Cycle for a Sustainable Future
journal, August 2011

  • Olah, George A.; Prakash, G. K. Surya; Goeppert, Alain
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja202642y

Recent developments in carbon dioxide utilization under mild conditions
journal, January 2010

  • Riduan, Siti Nurhanna; Zhang, Yugen
  • Dalton Transactions, Vol. 39, Issue 14
  • DOI: 10.1039/b920163g

Carbon Dioxide-The Hydrogen-Storage Material of the Future?
journal, October 2008


Transformation of Carbon Dioxide
journal, June 2007

  • Sakakura, Toshiyasu; Choi, Jun-Chul; Yasuda, Hiroyuki
  • Chemical Reviews, Vol. 107, Issue 6
  • DOI: 10.1021/cr068357u

Recent advances in the homogeneous hydrogenation of carbon dioxide
journal, December 2004

  • Jessop, Philip G.; Joó, Ferenc; Tai, Chih-Cheng
  • Coordination Chemistry Reviews, Vol. 248, Issue 21-24, p. 2425-2442
  • DOI: 10.1016/j.ccr.2004.05.019

Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2
journal, November 1995

  • Leitner, Walter
  • Angewandte Chemie International Edition in English, Vol. 34, Issue 20
  • DOI: 10.1002/anie.199522071

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

A Rechargeable Hydrogen Battery Based on Ru Catalysis
journal, May 2014

  • Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 27
  • DOI: 10.1002/anie.201310972

Towards a Practical Setup for Hydrogen Production from Formic Acid
journal, June 2013


Chemical Equilibria in Formic Acid/Amine-CO 2 Cycles under Isochoric Conditions using a Ruthenium(II) 1,2-Bis(diphenylphosphino)ethane Catalyst
journal, November 2013

  • Sordakis, Katerina; Beller, Matthias; Laurenczy, Gábor
  • ChemCatChem, Vol. 6, Issue 1
  • DOI: 10.1002/cctc.201300740

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
journal, September 2011

  • Papp, Gábor; Csorba, Jenő; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 50, Issue 44
  • DOI: 10.1002/anie.201104951

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
journal, May 2014


Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water
journal, January 2013

  • Wei, Yawen; Xue, Dong; Lei, Qian
  • Green Chemistry, Vol. 15, Issue 3
  • DOI: 10.1039/c2gc36619c

The development of aqueous transfer hydrogenation catalysts
journal, January 2011

  • Robertson, Andrew; Matsumoto, Takahiro; Ogo, Seiji
  • Dalton Transactions, Vol. 40, Issue 40
  • DOI: 10.1039/c1dt10544b

pH-Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water
journal, August 2009

  • Wang, Chao; Li, Chaoqun; Wu, Xiaofeng
  • Angewandte Chemie International Edition, Vol. 48, Issue 35
  • DOI: 10.1002/anie.200902570

Aqueous Biphasic Hydrogenations
journal, June 2002

  • Joó, Ferenc
  • Accounts of Chemical Research, Vol. 35, Issue 9
  • DOI: 10.1021/ar0100733

Efficient catalytic reduction of ketones with formic acid and ruthenium complexes
journal, May 1996


Mechanism of Asymmetric Hydrogenation of Acetophenone Catalyzed by Chiral η6-Arene–N-Tosylethylenediamine–Ruthenium(II) Complexes
journal, July 2006

  • Sandoval, Christian A.; Ohkuma, Takeshi; Utsumi, Noriyuki
  • Chemistry – An Asian Journal, Vol. 1, Issue 1-2
  • DOI: 10.1002/asia.200600098

Complex-Catalyzed Hydrogenation Reactions in Aqueous Media
journal, June 2002


Transfer Hydrogenation in Water: Enantioselective, Catalytic Reduction of α-Cyano and α-Nitro Substituted Acetophenones
journal, June 2010

  • Soltani, Omid; Ariger, Martin A.; Vázquez-Villa, Henar
  • Organic Letters, Vol. 12, Issue 13
  • DOI: 10.1021/ol1008894

RhIII- and IrIII-Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water
journal, February 2008

  • Wu, Xiaofeng; Li, Xiaohong; Zanotti-Gerosa, Antonio
  • Chemistry - A European Journal, Vol. 14, Issue 7
  • DOI: 10.1002/chem.200701258

Isolation and Crystal Structure of a Water-Soluble Iridium Hydride:  A Robust and Highly Active Catalyst for Acid-Catalyzed Transfer Hydrogenations of Carbonyl Compounds in Acidic Media
journal, April 2003

  • Abura, Tsutomu; Ogo, Seiji; Watanabe, Yoshihito
  • Journal of the American Chemical Society, Vol. 125, Issue 14
  • DOI: 10.1021/ja0288237

Chemoselective Conjugate Reduction of α,β-Unsaturated Ketones Catalyzed by Rhodium Amido Complexes in Aqueous Media
journal, April 2010

  • Li, Xuefeng; Li, Liangchun; Tang, Yuanfu
  • The Journal of Organic Chemistry, Vol. 75, Issue 9
  • DOI: 10.1021/jo100256t

Titanocene-Catalyzed Conjugate Reduction of α,β-Unsaturated Carbonyl Derivatives
journal, December 2009

  • Kosal, Andrew D.; Ashfeld, Brandon L.
  • Organic Letters, Vol. 12, Issue 1
  • DOI: 10.1021/ol9024315

A New Entry to Pd−H Chemistry:  Catalytic Asymmetric Conjugate Reduction of Enones with EtOH and a Highly Enantioselective Synthesis of Warfarin
journal, October 2006

  • Tsuchiya, Yasunori; Hamashima, Yoshitaka; Sodeoka, Mikiko
  • Organic Letters, Vol. 8, Issue 21
  • DOI: 10.1021/ol0619157

A Chemoselective Hydrogenation of the Olefinic Bond of α,β-Unsaturated Carbonyl Compounds in Aqueous Medium under Microwave Irradiation
journal, February 2006

  • Sharma, Anuj; Kumar, Vinod; Sinha, Arun K.
  • Advanced Synthesis & Catalysis, Vol. 348, Issue 3
  • DOI: 10.1002/adsc.200505315

Hydrogenation of olefins using water and zinc metal catalyzed by a rhodium complex
journal, October 2006


Iridium-Catalyzed Transfer Hydrogenation of α,β-Unsaturated and Saturated Carbonyl Compounds with 2-Propanol
journal, June 2001

  • Sakaguchi, Satoshi; Yamaga, Takumi; Ishii, Yasutaka
  • The Journal of Organic Chemistry, Vol. 66, Issue 13
  • DOI: 10.1021/jo0156722

Works referencing / citing this record:

CO 2 hydrogenation by phosphorus–nitrogen PN 3 P-pincer iridium hydride complexes: elucidation of the deactivation pathway
journal, January 2019

  • Pan, Yupeng; Guan, Chao; Li, Huaifeng
  • Dalton Transactions, Vol. 48, Issue 34
  • DOI: 10.1039/c9dt01319a

Impact of {Os(pap) 2 } in fine-tuning the binding modes and non-innocent potential of deprotonated 2,2′-bipyridine-3,3′-diol
journal, January 2016

  • Ghosh, Prabir; Lahiri, Goutam Kumar
  • Dalton Transactions, Vol. 45, Issue 12
  • DOI: 10.1039/c6dt00013d

Second sphere ligand modifications enable a recyclable catalyst for oxidant-free alcohol oxidation to carboxylates
journal, January 2017

  • Dahl, Eric W.; Louis-Goff, Thomas; Szymczak, Nathaniel K.
  • Chemical Communications, Vol. 53, Issue 14
  • DOI: 10.1039/c6cc10206a

Bifunctional Ru II -Complex-Catalysed Tandem C−C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents
journal, October 2016

  • Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan
  • Chemistry - A European Journal, Vol. 22, Issue 50
  • DOI: 10.1002/chem.201603557

Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Metall-Ligand-Kooperation
journal, September 2015


Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir
journal, February 2018

  • Kieffer, Ian A.; Allen, Robert J.; Fernandez, Jordan L.
  • Angewandte Chemie International Edition, Vol. 57, Issue 13
  • DOI: 10.1002/anie.201713174

Metal-Ligand Cooperation
journal, September 2015

  • Khusnutdinova, Julia R.; Milstein, David
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201503873

Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation: Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation
journal, April 2018

  • Iglesias, Manuel; Oro, Luis A.
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 20-21
  • DOI: 10.1002/ejic.201800159

Platinum Complexes with a Phosphino-Oxime/Oximate Ligand: Platinum Complexes with a Phosphino-Oxime/Oximate Ligand
journal, July 2018

  • Francos, Javier; Borge, Javier; Conejero, Salvador
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 27
  • DOI: 10.1002/ejic.201800398

Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid
journal, August 2016

  • Iguchi, Masayuki; Himeda, Yuichiro; Manaka, Yuichi
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600697

Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
journal, September 2018

  • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
  • Advanced Energy Materials, Vol. 9, Issue 23
  • DOI: 10.1002/aenm.201801275

Light-driven catalytic hydrogenation of carbon dioxide at low-pressure by a trinuclear iridium polyhydride complex
journal, January 2019

  • Shitaya, Shoji; Nomura, Kotohiro; Inagaki, Akiko
  • Chemical Communications, Vol. 55, Issue 35
  • DOI: 10.1039/c9cc00916g

Catalytic reactivity of an iridium complex with a proton responsive N-donor ligand in CO 2 hydrogenation to formate
journal, January 2018

  • Gunasekar, Gunniya Hariyanandam; Yoon, Yeahsel; Baek, Il-hyun
  • RSC Advances, Vol. 8, Issue 3
  • DOI: 10.1039/c7ra12343d

Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand
journal, January 2018

  • Lu, Sheng-Mei; Wang, Zhijun; Wang, Jijie
  • Green Chemistry, Vol. 20, Issue 8
  • DOI: 10.1039/c8gc00495a

Mechanistic insights into catalytic CO 2 hydrogenation using Mn( i )-complexes with pendant oxygen ligands
journal, January 2018

  • Das, Shubhajit; Pati, Swapan K.
  • Catalysis Science & Technology, Vol. 8, Issue 12
  • DOI: 10.1039/c8cy00183a

Electronic effects on reactivity and anticancer activity by half-sandwich N,N-chelated iridium( iii ) complexes
journal, January 2018

  • Guo, Lihua; Zhang, Hairong; Tian, Meng
  • New Journal of Chemistry, Vol. 42, Issue 19
  • DOI: 10.1039/c8nj03360a

Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation
journal, November 2017


Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir
journal, February 2018

  • Kieffer, Ian A.; Allen, Robert J.; Fernandez, Jordan L.
  • Angewandte Chemie, Vol. 130, Issue 13
  • DOI: 10.1002/ange.201713174