skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

Abstract

In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.

Authors:
 [1];  [1];  [2];  [2];  [2];  [3];  [3];  [1]
  1. National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Japan Science and Technology Agency, Saitama (Japan)
  2. National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1182536
Report Number(s):
BNL-107637-2015-JA
Journal ID: ISSN 0020-1669; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 11; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; proton-responsive ligand; iridium complexes; CO₂ hydrogenation

Citation Formats

Onishi, Naoya, Xu, Shaoan, Manaka, Yuichi, Suna, Yuki, Wang, Wan -Hui, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand. United States: N. p., 2015. Web. https://doi.org/10.1021/ic502904q.
Onishi, Naoya, Xu, Shaoan, Manaka, Yuichi, Suna, Yuki, Wang, Wan -Hui, Muckerman, James T., Fujita, Etsuko, & Himeda, Yuichiro. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand. United States. https://doi.org/10.1021/ic502904q
Onishi, Naoya, Xu, Shaoan, Manaka, Yuichi, Suna, Yuki, Wang, Wan -Hui, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Wed . "CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand". United States. https://doi.org/10.1021/ic502904q. https://www.osti.gov/servlets/purl/1182536.
@article{osti_1182536,
title = {CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand},
author = {Onishi, Naoya and Xu, Shaoan and Manaka, Yuichi and Suna, Yuki and Wang, Wan -Hui and Muckerman, James T. and Fujita, Etsuko and Himeda, Yuichiro},
abstractNote = {In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.},
doi = {10.1021/ic502904q},
journal = {Inorganic Chemistry},
number = 11,
volume = 54,
place = {United States},
year = {2015},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysis for the Valorization of Exhaust Carbon: from CO 2 to Chemicals, Materials, and Fuels. Technological Use of CO 2
journal, November 2013

  • Aresta, Michele; Dibenedetto, Angela; Angelini, Antonella
  • Chemical Reviews, Vol. 114, Issue 3
  • DOI: 10.1021/cr4002758

Recent advances in catalytic hydrogenation of carbon dioxide
journal, January 2011

  • Wang, Wei; Wang, Shengping; Ma, Xinbin
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c1cs15008a

Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities
journal, April 2001

  • Arakawa, Hironori; Aresta, Michele; Armor, John N.
  • Chemical Reviews, Vol. 101, Issue 4
  • DOI: 10.1021/cr000018s

Transformation of Carbon Dioxide
journal, June 2007

  • Sakakura, Toshiyasu; Choi, Jun-Chul; Yasuda, Hiroyuki
  • Chemical Reviews, Vol. 107, Issue 6
  • DOI: 10.1021/cr068357u

The Hydrogen Issue
journal, December 2010


Liquid-phase chemical hydrogen storage materials
journal, January 2012

  • Yadav, Mahendra; Xu, Qiang
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee22937d

Hydrogen generation from formic acid and alcohols using homogeneous catalysts
journal, January 2010

  • Johnson, Tarn C.; Morris, David J.; Wills, Martin
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B904495G

B–N compounds for chemical hydrogenstorage
journal, January 2009

  • Hamilton, Charles W.; Baker, R. Tom; Staubitz, Anne
  • Chem. Soc. Rev., Vol. 38, Issue 1, p. 279-293
  • DOI: 10.1039/B800312M

Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method
journal, August 2006


CO2-“Neutral” Hydrogen Storage Based on Bicarbonates and Formates
journal, May 2011

  • Boddien, Albert; Gärtner, Felix; Federsel, Christopher
  • Angewandte Chemie International Edition, Vol. 50, Issue 28
  • DOI: 10.1002/anie.201101995

Towards the development of a hydrogen battery
journal, January 2012

  • Boddien, Albert; Federsel, Christopher; Sponholz, Peter
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22043a

A Rechargeable Hydrogen Battery Based on Ru Catalysis
journal, May 2014

  • Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 27
  • DOI: 10.1002/anie.201310972

Catalytic Fixation of Carbon Dioxide to Formic acid by Transition-Metal Complexes Under mild Conditions
journal, August 1976

  • Inoue, Yoshio; Izumida, Hitoshi; Sasaki, Yoshiyuki
  • Chemistry Letters, Vol. 5, Issue 8
  • DOI: 10.1246/cl.1976.863

Recent advances in the homogeneous hydrogenation of carbon dioxide
journal, December 2004

  • Jessop, Philip G.; Joó, Ferenc; Tai, Chih-Cheng
  • Coordination Chemistry Reviews, Vol. 248, Issue 21-24, p. 2425-2442
  • DOI: 10.1016/j.ccr.2004.05.019

Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases
journal, August 2013

  • Fujita, Etsuko; Muckerman, James T.; Himeda, Yuichiro
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2012.11.004

High-Pressure Combinatorial Screening of Homogeneous Catalysts:  Hydrogenation of Carbon Dioxide
journal, November 2003

  • Tai, Chih-Cheng; Chang, Tangel; Roller, Brentin
  • Inorganic Chemistry, Vol. 42, Issue 23
  • DOI: 10.1021/ic034881x

Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide:  A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts
journal, May 2003

  • Heldebrant, David J.; Jessop, Philip G.
  • Journal of the American Chemical Society, Vol. 125, Issue 19
  • DOI: 10.1021/ja029131l

In Situ Formation of Ruthenium Catalysts for the Homogeneous Hydrogenation of Carbon Dioxide
journal, March 2002

  • Tai, Chih-Cheng; Pitts, Justine; Linehan, John C.
  • Inorganic Chemistry, Vol. 41, Issue 6
  • DOI: 10.1021/ic010866l

Homogeneous catalytic hydrogenation of supercritical carbon dioxide
journal, March 1994

  • Jessop, Philip G.; Ikariya, Takao; Noyori, Ryoji
  • Nature, Vol. 368, Issue 6468
  • DOI: 10.1038/368231a0

Activation of carbon dioxide
journal, July 1994

  • Leitner, Walter; Dinjus, Eckhard; Gaßner, Franz
  • Journal of Organometallic Chemistry, Vol. 475, Issue 1-2
  • DOI: 10.1016/0022-328X(94)84030-X

Structure-Reactivity Relationships in the Hydrogenation of Carbon Dioxide with Ruthenium Complexes Bearing Pyridinylazolato Ligands
journal, April 2013

  • Muller, Keven; Sun, Yu; Heimermann, Andreas
  • Chemistry - A European Journal, Vol. 19, Issue 24
  • DOI: 10.1002/chem.201204199

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

(Pentamethylcyclopentadienyl)iridium-PTA (PTA = 1,3,5-Triaza-7-phosphaadamantane) Complexes and Their Application in Catalytic Water Phase Carbon Dioxide Hydrogenation
journal, February 2008

  • Erlandsson, Mikael; Landaeta, Vanessa R.; Gonsalvi, Luca
  • European Journal of Inorganic Chemistry, Vol. 2008, Issue 4
  • DOI: 10.1002/ejic.200700792

CO 2 Activation and Catalysis Driven by Iridium Complexes
journal, September 2013

  • Fernández-Alvarez, Francisco J.; Iglesias, Manuel; Oro, Luis A.
  • ChemCatChem, Vol. 5, Issue 12
  • DOI: 10.1002/cctc.201300559

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
journal, November 2010

  • Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201004263

Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate
journal, December 2012

  • Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja307924a

Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Well-Defined Cobalt Dihydrogen Complex
journal, December 2011

  • Federsel, Christopher; Ziebart, Carolin; Jackstell, Ralf
  • Chemistry - A European Journal, Vol. 18, Issue 1
  • DOI: 10.1002/chem.201101343

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media
journal, October 2013

  • Badiei, Yosra M.; Wang, Wan-Hui; Hull, Jonathan F.
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic401707u

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201104542

A New Approach to the Reduction of Carbon Dioxide: CO 2 Reduction to Formate by Transfer Hydrogenation in i PrOH
journal, October 2009

  • Sanz, Sergio; Benítez, Miriam; Peris, Eduardo
  • Organometallics, Vol. 29, Issue 1
  • DOI: 10.1021/om900820x

‘(η6-arene)Ru(bis-NHC)’ complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH
journal, January 2010

  • Sanz, Sergio; Azua, Arturo; Peris, Eduardo
  • Dalton Transactions, Vol. 39, Issue 27
  • DOI: 10.1039/c003220d

Towards a Sustainable Synthesis of Formate Salts: Combined Catalytic Methanol Dehydrogenation and Bicarbonate Hydrogenation
journal, May 2014

  • Liu, Qiang; Wu, Lipeng; Gülak, Samet
  • Angewandte Chemie International Edition, Vol. 53, Issue 27
  • DOI: 10.1002/anie.201400456

Formic acid as a hydrogen source – recent developments and future trends
journal, January 2012

  • Grasemann, Martin; Laurenczy, Gábor
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21928j

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Hydrogen storage: beyond conventional methods
journal, January 2013

  • Dalebrook, Andrew F.; Gan, Weijia; Grasemann, Martin
  • Chemical Communications, Vol. 49, Issue 78
  • DOI: 10.1039/c3cc43836h

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes
journal, July 2009

  • Morris, David J.; Clarkson, Guy J.; Wills, Martin
  • Organometallics, Vol. 28, Issue 14
  • DOI: 10.1021/om900099u

Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
journal, December 2011

  • Tanaka, Ryo; Yamashita, Makoto; Chung, Lung Wa
  • Organometallics, Vol. 30, Issue 24
  • DOI: 10.1021/om2010172

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions
journal, December 2013

  • Czaun, Miklos; Goeppert, Alain; Kothandaraman, Jotheeswari
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs4007974

Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Base‐Free Non‐Noble‐Metal‐Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights
journal, September 2014

  • Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias
  • Chemistry – A European Journal, Vol. 20, Issue 42
  • DOI: 10.1002/chem.201403602

Towards a Practical Setup for Hydrogen Production from Formic Acid
journal, June 2013


Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Heterogeneous Silica-Supported Ruthenium Phosphine Catalysts for Selective Formic Acid Decomposition
journal, June 2013


Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution
journal, August 2014

  • Guerriero, Antonella; Bricout, Hervé; Sordakis, Katerina
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500655x

Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands
journal, March 2013

  • Gan, Weijia; Snelders, Dennis J. M.; Dyson, Paul J.
  • ChemCatChem, Vol. 5, Issue 5
  • DOI: 10.1002/cctc.201200782

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst
journal, January 2000

  • Gao, Yuan; Kuncheria, Joshi K.; Jenkins, Hilary A.
  • Journal of the Chemical Society, Dalton Transactions, Issue 18
  • DOI: 10.1039/b004234j

A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
journal, September 2011

  • Papp, Gábor; Csorba, Jenő; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 50, Issue 44
  • DOI: 10.1002/anie.201104951

Excited state proton transfer of ruthenium(II) complexes of 4,7-dihydroxy-1,10-phenanthroline. Increased acidity in the excited state
journal, October 1978

  • Giordano, Paul J.; Bock, C. Randolph; Wrighton, Mark S.
  • Journal of the American Chemical Society, Vol. 100, Issue 22
  • DOI: 10.1021/ja00490a032

Polymer-Supported pH Sensors Based on Hydrophobically Bound Luminescent Ruthenium(II) Complexes
journal, January 1998

  • Price, Jason M.; Xu, Wenying; Demas, J. N.
  • Analytical Chemistry, Vol. 70, Issue 2
  • DOI: 10.1021/ac9707848

Structural, Electronic, and Acid/Base Properties of [Ru(bpy) 2 (bpy(OH) 2 )] 2+ (bpy = 2,2′-Bipyridine, bpy(OH) 2 = 4,4′-Dihydroxy-2,2′-bipyridine)
journal, April 2011

  • Klein, Samantha; Dougherty, William G.; Kassel, W. Scott
  • Inorganic Chemistry, Vol. 50, Issue 7
  • DOI: 10.1021/ic1017054

Structural, electronic and acid/base properties of [Ru(bpy(OH)2)3]2+ (bpy(OH)2 = 4,4′-dihydroxy-2,2′-bipyridine)
journal, January 2012

  • Fuentes, Michelle J.; Bognanno, Richard J.; Dougherty, William G.
  • Dalton Transactions, Vol. 41, Issue 40
  • DOI: 10.1039/c2dt31706k

Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release
journal, January 2014


Stabilization and Destabilization of the Ru?CO Bond During the 2,2?-Bipyridin-6-onato (bpyO)-Localized Redox Reaction of [Ru(terpy)(bpyO)(CO)](PF6)
journal, January 2005

  • Tomon, Takashi; Koizumi, Take-aki; Tanaka, Koji
  • European Journal of Inorganic Chemistry, Vol. 2005, Issue 2
  • DOI: 10.1002/ejic.200400522

Rhodium catalysed hydroformlyation of higher alkenes using amphiphilic ligands: part 2
journal, February 1997

  • Buhling, Armin; Kamer, Paul C. J.; van Leeuwen, Piet W. N. M.
  • Journal of Molecular Catalysis A: Chemical, Vol. 116, Issue 1-2
  • DOI: 10.1016/S1381-1169(96)00195-1

Hydroxy-substituted pyridine-like N-heterocycles: versatile ligands in organometallic catalysis
journal, January 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • New Journal of Chemistry, Vol. 37, Issue 7
  • DOI: 10.1039/c3nj41146j

Transfer hydrogenation of a variety of ketones catalyzed by rhodium complexes in aqueous solution and their application to asymmetric reduction using chiral Schiff base ligands
journal, March 2003

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of Molecular Catalysis A: Chemical, Vol. 195, Issue 1-2
  • DOI: 10.1016/S1381-1169(02)00576-9

Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid. Theoretical Study of Real Catalyst, Ligand Effects, and Solvation Effects
journal, March 2005

  • Ohnishi, Yu-ya; Matsunaga, Tadashi; Nakao, Yoshihide
  • Journal of the American Chemical Society, Vol. 127, Issue 11
  • DOI: 10.1021/ja043697n

Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid−Base Equilibrium of Ligands for Conversion of Carbon Dioxide
journal, January 2007

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Organometallics, Vol. 26, Issue 3
  • DOI: 10.1021/om060899e

Interconversion between Formic Acid and H2/CO2 using Rhodium and Ruthenium Catalysts for CO2 Fixation and H2 Storage
journal, January 2011


pH-Dependent Catalytic Activity and Chemoselectivity in Transfer Hydrogenation Catalyzed by Iridium Complex with 4,4′-Dihydroxy-2,2′-bipyridine
journal, December 2008

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Miyazawa, Satoru
  • Chemistry - A European Journal, Vol. 14, Issue 35
  • DOI: 10.1002/chem.200801568

Recyclable Catalyst for Conversion of Carbon Dioxide into Formate Attributable to an Oxyanion on the Catalyst Ligand
journal, September 2005

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja054236k

Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/C3CC46135A

Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes
journal, November 2014

  • Suna, Yuki; Ertem, Mehmed Z.; Wang, Wan-Hui
  • Organometallics, Vol. 33, Issue 22
  • DOI: 10.1021/om500832d

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

Hydrogenation of Carbon Dioxide Using Half-Sandwich Cobalt, Rhodium, and Iridium Complexes: DFT Study on the Mechanism and Metal Effect
journal, August 2014

  • Hou, Cheng; Jiang, Jingxing; Zhang, Shidong
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500688q

Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
journal, May 2014


    Works referencing / citing this record:

    Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO 2 /dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase
    journal, January 2019

    • Shiekh, Bilal Ahmad; Kaur, Damanjit; Kumar, Sourav
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 38
    • DOI: 10.1039/c9cp03406d

    A computational study on ligand assisted vs. ligand participation mechanisms for CO 2 hydrogenation: importance of bifunctional ligand based catalysts
    journal, January 2019

    • Mandal, Shyama Charan; Rawat, Kuber Singh; Pathak, Biswarup
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 7
    • DOI: 10.1039/c8cp06714g

    Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline‐Based, Proton‐Responsive Ligand
    journal, December 2016


    Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir
    journal, February 2018

    • Kieffer, Ian A.; Allen, Robert J.; Fernandez, Jordan L.
    • Angewandte Chemie International Edition, Vol. 57, Issue 13
    • DOI: 10.1002/anie.201713174

    A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
    journal, April 2019

    • Fink, Cornel; Laurenczy, Gábor
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
    • DOI: 10.1002/ejic.201900344

    Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation
    journal, August 2015

    • Matsunami, Asuka; Kayaki, Yoshihito; Ikariya, Takao
    • Chemistry - A European Journal, Vol. 21, Issue 39
    • DOI: 10.1002/chem.201502412

    Half‐sandwich ruthenium complexes with S chiff base ligands bearing a hydroxyl group: Preparation, characterization and catalytic activities
    journal, November 2019

    • Jia, Wei‐Guo; Wang, Zhi‐Bao; Zhi, Xue‐Ting
    • Applied Organometallic Chemistry, Vol. 34, Issue 1
    • DOI: 10.1002/aoc.5289

    Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water
    journal, January 2019

    • Chakrabarti, Kaushik; Maji, Milan; Kundu, Sabuj
    • Green Chemistry, Vol. 21, Issue 8
    • DOI: 10.1039/c8gc03744b

    Synthesis of Carboxylic Acids and Esters from CO2
    journal, December 2016


    Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO 2 hydrogenation
    journal, January 2019

    • Walsh, Aaron P.; Laureanti, Joseph A.; Katipamula, Sriram
    • Faraday Discussions, Vol. 215
    • DOI: 10.1039/c8fd00164b

    Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
    journal, October 2017

    • Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
    • Angewandte Chemie International Edition, Vol. 56, Issue 47
    • DOI: 10.1002/anie.201709319

    Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
    journal, September 2018

    • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
    • Advanced Energy Materials, Vol. 9, Issue 23
    • DOI: 10.1002/aenm.201801275

    CO 2 reduction: the quest for electrocatalytic materials
    journal, January 2017

    • Khezri, Bahareh; Fisher, Adrian C.; Pumera, Martin
    • Journal of Materials Chemistry A, Vol. 5, Issue 18
    • DOI: 10.1039/c6ta09875d

    Carbon Nitride as a Ligand: Selective Hydrogenation of Terminal Alkenes Using [(η 5 ‐C 5 Me 5 )IrCl(g‐C 3 N 4 ‐κ 2 N,N’ )]Cl
    journal, April 2020


    Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid
    journal, December 2017

    • Nakahara, Yoshiko; Toda, Tatsuro; Matsunami, Asuka
    • Chemistry - An Asian Journal, Vol. 13, Issue 1
    • DOI: 10.1002/asia.201701474

    Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions
    journal, January 2018

    • Heltzel, Jacob M.; Finn, Matthew; Ainembabazi, Diana
    • Chemical Communications, Vol. 54, Issue 48
    • DOI: 10.1039/c8cc03157f

    Catalytic reactivity of an iridium complex with a proton responsive N-donor ligand in CO 2 hydrogenation to formate
    journal, January 2018

    • Gunasekar, Gunniya Hariyanandam; Yoon, Yeahsel; Baek, Il-hyun
    • RSC Advances, Vol. 8, Issue 3
    • DOI: 10.1039/c7ra12343d

    Iridium–NHC-based catalyst for ambient pressure storage and low temperature release of H 2 via the CO 2 /HCO 2 H couple
    journal, January 2018

    • Semwal, Shrivats; Kumar, Abhishek; Choudhury, Joyanta
    • Catalysis Science & Technology, Vol. 8, Issue 23
    • DOI: 10.1039/c8cy02069h

    Mixed-valence copper( i,ii ) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers
    journal, January 2016

    • Vinogradova, Katerina A.; Krivopalov, Viktor P.; Nikolaenkova, Elena B.
    • Dalton Transactions, Vol. 45, Issue 2
    • DOI: 10.1039/c5dt04005a

    Base-free hydrogenation of CO 2 to formic acid in water with an iridium complex bearing a N,N′-diimine ligand
    journal, January 2016

    • Lu, Sheng-Mei; Wang, Zhijun; Li, Jun
    • Green Chemistry, Vol. 18, Issue 16
    • DOI: 10.1039/c6gc00856a

    Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation
    journal, November 2017


    Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms
    journal, July 2018

    • Wiedner, Eric S.; Linehan, John C.
    • Chemistry – A European Journal, Vol. 24, Issue 64
    • DOI: 10.1002/chem.201801759

    Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir
    journal, February 2018

    • Kieffer, Ian A.; Allen, Robert J.; Fernandez, Jordan L.
    • Angewandte Chemie, Vol. 130, Issue 13
    • DOI: 10.1002/ange.201713174