DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

Abstract

Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

Authors:
 [1];  [1];  [2];  [1];  [3];  [3];  [4];  [5];  [6];  [6];  [7];  [1];  [1];  [2];  [8];  [4]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)
  5. Cornell Univ., Ithaca, NY (United States)
  6. Colorado School of Mines, Golden, CO (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Colorado School of Mines, Golden, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1182533
Report Number(s):
BNL-107622-2015-JA
Journal ID: ISSN 1530-6984; R&D Project: 16060; KC0403020
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 15; Journal Issue: 2; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; functional nanomaterials; lithium ion battery; nickel oxide; conversion reaction; in-situ TEM; incubation rate capability

Citation Formats

He, Kai, Xin, Huolin L., Zhao, Kejie, Yu, Xiqian, Norlund, Dennis, Weng, Tsu-Chien, Li, Jing, Jiang, Yi, Cadigan, Christopher A., Richards, Ryan M., Doeff, Marca M., Yang, Xiao-Qing, Stach, Eric A., Li, Ju, Lin, Feng, and Su, Dong. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials. United States: N. p., 2015. Web. doi:10.1021/nl5049884.
He, Kai, Xin, Huolin L., Zhao, Kejie, Yu, Xiqian, Norlund, Dennis, Weng, Tsu-Chien, Li, Jing, Jiang, Yi, Cadigan, Christopher A., Richards, Ryan M., Doeff, Marca M., Yang, Xiao-Qing, Stach, Eric A., Li, Ju, Lin, Feng, & Su, Dong. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials. United States. https://doi.org/10.1021/nl5049884
He, Kai, Xin, Huolin L., Zhao, Kejie, Yu, Xiqian, Norlund, Dennis, Weng, Tsu-Chien, Li, Jing, Jiang, Yi, Cadigan, Christopher A., Richards, Ryan M., Doeff, Marca M., Yang, Xiao-Qing, Stach, Eric A., Li, Ju, Lin, Feng, and Su, Dong. Thu . "Transitions from near-surface to interior redox upon lithiation in conversion electrode materials". United States. https://doi.org/10.1021/nl5049884. https://www.osti.gov/servlets/purl/1182533.
@article{osti_1182533,
title = {Transitions from near-surface to interior redox upon lithiation in conversion electrode materials},
author = {He, Kai and Xin, Huolin L. and Zhao, Kejie and Yu, Xiqian and Norlund, Dennis and Weng, Tsu-Chien and Li, Jing and Jiang, Yi and Cadigan, Christopher A. and Richards, Ryan M. and Doeff, Marca M. and Yang, Xiao-Qing and Stach, Eric A. and Li, Ju and Lin, Feng and Su, Dong},
abstractNote = {Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.},
doi = {10.1021/nl5049884},
journal = {Nano Letters},
number = 2,
volume = 15,
place = {United States},
year = {Thu Jan 29 00:00:00 EST 2015},
month = {Thu Jan 29 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 80 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage
journal, January 1991

  • Conway, B. E.
  • Journal of The Electrochemical Society, Vol. 138, Issue 6, p. 1539-1548
  • DOI: 10.1149/1.2085829

Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

A review of electrode materials for electrochemical supercapacitors
journal, January 2012

  • Wang, Guoping; Zhang, Lei; Zhang, Jiujun
  • Chemical Society Reviews, Vol. 41, Issue 2, p. 797-828
  • DOI: 10.1039/C1CS15060J

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4
journal, July 2003

  • Doeff, Marca M.; Hu, Yaoqin; McLarnon, Frank
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 10, p. A207-A209
  • DOI: 10.1149/1.1601372

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
journal, August 2006

  • Hu, Yong-Sheng; Guo, Yu-Guo; Sigle, Wilfried
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1709

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries
journal, February 2011


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Discharge Model for the Lithium Iron-Phosphate Electrode
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785012

Phase evolution for conversion reaction electrodes in lithium-ion batteries
journal, February 2014

  • Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4358

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery
journal, May 2008

  • Varghese, Binni; Reddy, M. V.; Yanwu, Zhu
  • Chemistry of Materials, Vol. 20, Issue 10
  • DOI: 10.1021/cm703512k

Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage
journal, March 2012

  • Zhou, Guangmin; Wang, Da-Wei; Yin, Li-Chang
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn300098m

Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Intercalation Pathway in Many-Particle LiFePO 4 Electrode Revealed by Nanoscale State-of-Charge Mapping
journal, February 2013

  • Chueh, William C.; El Gabaly, Farid; Sugar, Joshua D.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl3031899

Sodiation via Heterogeneous Disproportionation in FeF 2 Electrodes for Sodium-Ion Batteries
journal, June 2014

  • He, Kai; Zhou, Yongning; Gao, Peng
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502284y

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
journal, May 2012

  • Liu, Xiao Hua; Liu, Yang; Kushima, Akihiro
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200024

Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation
journal, November 2011

  • Kushima, Akihiro; Liu, Xiao Hua; Zhu, Guang
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl201376j

Recent progress in nickel based materials for high performance pseudocapacitor electrodes
journal, December 2014


Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
journal, January 2012

  • Zhao, Kejie; Pharr, Matt; Wan, Qiang
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.020203jes

Charge transfer kinetics at the solid–solid interface in porous electrodes
journal, April 2014

  • Bai, Peng; Bazant, Martin Z.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4585

Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
journal, January 2012

  • Yang, Hui; Huang, Shan; Huang, Xu
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204437t

Works referencing / citing this record:

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

In‐situ structural characterizations of electrochemical intercalation of graphite compounds
journal, October 2019


Emergent Pseudocapacitance of 2D Nanomaterials
journal, February 2018


Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
journal, July 2018


Review—Promises and Challenges of In Situ Transmission Electron Microscopy Electrochemical Techniques in the Studies of Lithium Ion Batteries
journal, January 2017

  • Xie, Zhi-Hui; Jiang, Zimin; Zhang, Xueyuan
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1451709jes

In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery
journal, April 2016


Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
journal, August 2015

  • Li, Sa; Niu, Junjie; Zhao, Yu Cheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8872

Coordination Polymers Derived General Synthesis of Multishelled Mixed Metal-Oxide Particles for Hybrid Supercapacitors
journal, February 2017


Orientation‐Dependent Intercalation Channels for Lithium and Sodium in Black Phosphorus
journal, September 2019

  • Kim, Sungkyu; Cui, Jiang; Dravid, Vinayak P.
  • Advanced Materials, Vol. 31, Issue 46
  • DOI: 10.1002/adma.201904623

Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe 2 Single Crystals
journal, October 2018

  • Kim, Sungkyu; Yao, Zhenpeng; Lim, Jin-Myoung
  • Advanced Materials, Vol. 30, Issue 51
  • DOI: 10.1002/adma.201804925

Crystallographic-orientation dependent Li ion migration and reactions in layered MoSe 2
journal, May 2019


Flexible Solid-State Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Encapsulated Ternary Metal-Nitrides with Ultralong Cycle Life
journal, September 2018

  • Balamurugan, Jayaraman; Nguyen, Thanh Tuan; Aravindan, Vanchiappan
  • Advanced Functional Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adfm.201804663

Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite
journal, January 2019


Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors
journal, September 2016

  • Liu, Chaofeng; Zhang, Changkun; Fu, Haoyu
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601127

Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy
journal, October 2017

  • Shang, Tongtong; Wen, Yuren; Xiao, Dongdong
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700709

Electrochemically driven mechanical energy harvesting
journal, January 2016

  • Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10146

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
journal, August 2015

  • Li, Sa; Niu, Junjie; Zhao, Yu Cheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8872

Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
journal, July 2018


Engineering Heteromaterials to Control Lithium Ion Transport Pathways
journal, December 2015

  • Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18482