DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

Abstract

To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, tomore » achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [4];  [5];  [1];  [1];  [1];  [6]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Seoul National Univ., Seoul (Korea)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)
  5. Stony Brook Univ., Stony Brook, NY (United States); North Univ. of China, Shanxi (China)
  6. Stony Brook Univ., Stony Brook, NY (United States); Cornell Univ., Ithaca, NY (United States); Univ. of St. Andrews, Fife (Scotland)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1182501
Report Number(s):
BNL-107406-2015-JA
Journal ID: ISSN 0027-8424; R&D Project: PO016; PO010; KC0202020; KC0201060
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 5; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ferromagnetic topological insulator; dirac-mass gapmap; magnetic dopant atom effects

Citation Formats

Lee, Inhee, Kim, Chung Koo, Lee, Jinho, Billinge, Simon J. L., Zhong, Ruidan D., Schneeloch, John A., Liu, Tiansheng S., Valla, Tonica, Tranquada, John M., Gu, Genda D., and Davis, J. C. Séamus. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. United States: N. p., 2015. Web. doi:10.1073/pnas.1424322112.
Lee, Inhee, Kim, Chung Koo, Lee, Jinho, Billinge, Simon J. L., Zhong, Ruidan D., Schneeloch, John A., Liu, Tiansheng S., Valla, Tonica, Tranquada, John M., Gu, Genda D., & Davis, J. C. Séamus. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. United States. https://doi.org/10.1073/pnas.1424322112
Lee, Inhee, Kim, Chung Koo, Lee, Jinho, Billinge, Simon J. L., Zhong, Ruidan D., Schneeloch, John A., Liu, Tiansheng S., Valla, Tonica, Tranquada, John M., Gu, Genda D., and Davis, J. C. Séamus. Tue . "Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3". United States. https://doi.org/10.1073/pnas.1424322112. https://www.osti.gov/servlets/purl/1182501.
@article{osti_1182501,
title = {Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3},
author = {Lee, Inhee and Kim, Chung Koo and Lee, Jinho and Billinge, Simon J. L. and Zhong, Ruidan D. and Schneeloch, John A. and Liu, Tiansheng S. and Valla, Tonica and Tranquada, John M. and Gu, Genda D. and Davis, J. C. Séamus},
abstractNote = {To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.},
doi = {10.1073/pnas.1424322112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 5,
volume = 112,
place = {United States},
year = {Tue Jan 20 00:00:00 EST 2015},
month = {Tue Jan 20 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 166 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

STM Imaging of Electronic Waves on the Surface of Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects
journal, January 2010

  • Alpichshev, Zhanybek; Analytis, J. G.; Chu, J.-H.
  • Physical Review Letters, Vol. 104, Issue 1, Article No. 016401
  • DOI: 10.1103/PhysRevLett.104.016401

Signatures of Dirac fermion-mediated magnetic order
text, January 2014


Magnetic impurities on the surface of a topological insulator
text, January 2008


Electrically Controllable Surface Magnetism on the Surface of Topological Insulators
journal, February 2011


Dynamical axion field in topological magnetic insulators
journal, March 2010

  • Li, Rundong; Wang, Jing; Qi, Xiao-Liang
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1534

Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit
journal, September 2014


Spatial fluctuations of helical Dirac fermions on the surface of topological insulators
journal, October 2011

  • Beidenkopf, Haim; Roushan, Pedram; Seo, Jungpil
  • Nature Physics, Vol. 7, Issue 12
  • DOI: 10.1038/nphys2108

Signatures of Dirac fermion-mediated magnetic order
journal, October 2014

  • Sessi, Paolo; Reis, Felix; Bathon, Thomas
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6349

Dirac-fermion-mediated ferromagnetism in a topological insulator
journal, August 2012

  • Checkelsky, Joseph G.; Ye, Jianting; Onose, Yoshinori
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2388

Thin Films of Magnetically Doped Topological Insulator with Carrier-Independent Long-Range Ferromagnetic Order
journal, January 2013


Self-consistent theory of ferromagnetism on the surface of a topological insulator
journal, March 2014


Topological field theory of time-reversal invariant insulators
journal, November 2008

  • Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng
  • Physical Review B, Vol. 78, Issue 19, Article No. 195424
  • DOI: 10.1103/PhysRevB.78.195424

Inducing a Magnetic Monopole with Topological Surface States
journal, February 2009


A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
journal, December 2010

  • Wray, L. Andrew; Xu, Su-Yang; Xia, Yuqi
  • Nature Physics, Vol. 7, Issue 1
  • DOI: 10.1038/nphys1838

Identifying Magnetic Anisotropy of the Topological Surface State of Cr 0.05 Sb 1.95 Te 3 with Spin-Polarized STM
journal, October 2013


Carriers dependence of the magnetic properties in magnetic topological insulator Sb1.95−xBixCr0.05Te3
journal, August 2012

  • Li, H.; Song, Y. R.; Yao, Meng-Yu
  • Applied Physics Letters, Vol. 101, Issue 7
  • DOI: 10.1063/1.4746404

Surface-Quantized Anomalous Hall Current and the Magnetoelectric Effect in Magnetically Disordered Topological Insulators
journal, April 2011


Topological Character and Magnetism of the Dirac State in Mn-Doped Bi 2 Te 3
journal, August 2012


Direct Observation of Broken Time-Reversal Symmetry on the Surface of a Magnetically Doped Topological Insulator
journal, May 2011


Magnetoelectric response of the time-reversal invariant helical metal
journal, May 2010


Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator
journal, August 2010


Magnetic Impurities on the Surface of a Topological Insulator
journal, April 2009


Topological Field Theory of Time-Reversal Invariant Insulators
text, January 2008


Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
journal, March 2013


Quantum Anomalous Hall Effect in Hg 1 y Mn y Te Quantum Wells
journal, October 2008


Surface magnetic ordering in topological insulators with bulk magnetic dopants
journal, May 2012


Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators
journal, April 2009


Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator
journal, August 2014

  • Checkelsky, J. G.; Yoshimi, R.; Tsukazaki, A.
  • Nature Physics, Vol. 10, Issue 10
  • DOI: 10.1038/nphys3053

Fractional charge and quantized current in the quantum spin Hall state
journal, March 2008

  • Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng
  • Nature Physics, Vol. 4, Issue 4
  • DOI: 10.1038/nphys913

Giant Magneto-Optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators
journal, July 2010


Ordering of Magnetic Impurities and Tunable Electronic Properties of Topological Insulators
journal, March 2011


Topological Quantization in Units of the Fine Structure Constant
journal, October 2010


Carrier dependent ferromagnetism in chromium doped topological insulator <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mtext>Cr</mml:mtext></mml:mrow><mml:mrow><mml:mi>y</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Sb</mml:mtext></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Te</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>
journal, October 2013


Development of ferromagnetism in the doped topological insulator Bi 2 x Mn x Te 3
journal, May 2010


Quantized Anomalous Hall Effect in Magnetic Topological Insulators
journal, June 2010


Monopole current and unconventional Hall response on a topological insulator
journal, June 2010


Fractional Charge and Quantized Current in the Quantum Spin Hall State
preprint, January 2007


Electrically controllable surface magnetism on the surface of topological insulator
text, January 2010


Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field
journal, May 2015


Works referencing / citing this record:

Magnetic-impurity-induced modifications to ultrafast carrier dynamics in the ferromagnetic topological insulators Sb 2− x V x Te 3
journal, September 2019


Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states
journal, July 2019

  • Allen, Monica; Cui, Yongtao; Yue Ma, Eric
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 29
  • DOI: 10.1073/pnas.1818255116

Electron-phonon coupling in topological surface states: The role of polar optical modes
journal, April 2017


Intrinsic quantized anomalous Hall effect in a moiré heterostructure
journal, December 2019


Transport properties on an ionically disordered surface of topological insulators: Toward high-performance thermoelectrics
journal, December 2019

  • Chiba, Takahiro; Takahashi, Saburo
  • Journal of Applied Physics, Vol. 126, Issue 24
  • DOI: 10.1063/1.5131311

Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems
journal, December 2018


Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe 2
journal, November 2016


Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review
journal, January 2018


Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state
journal, July 2016

  • Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12245

Superconducting Topological Surface States in Non-centrosymmetric Bulk Superconductor PbTaSe2
text, January 2016


Current-driven instability of quantum anomalous Hall effect in ferromagnetic topological insulators
text, January 2017


Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects
journal, April 2017


Experimental realization of an intrinsic magnetic topological insulator
text, January 2018


Cr2Te3 Thin Films for Integration in Magnetic Topological Insulator Heterostructures
journal, July 2019


Cr-Containing Ferromagnetic Film–Topological Insulator Heterostructures as Promising Materials for the Quantum Anomalous Hall Effect
journal, January 2019


Magnetic profile of proximity-coupled ( Dy , Bi ) 2 Te 3 / ( Cr , Sb ) 2 Te 3 topological insulator heterostructures
journal, August 2019


Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi 2 Te 4
journal, February 2020

  • Estyunin, D. A.; Klimovskikh, I. I.; Shikin, A. M.
  • APL Materials, Vol. 8, Issue 2
  • DOI: 10.1063/1.5142846

Direct evidence of ferromagnetism in a quantum anomalous Hall system
text, January 2018


Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films
journal, May 2016


Prediction and observation of an antiferromagnetic topological insulator
journal, December 2019


Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators
text, January 2019


Imaging quantum materials
journal, October 2017


Magnetic topological insulators
journal, January 2019

  • Tokura, Yoshinori; Yasuda, Kenji; Tsukazaki, Atsushi
  • Nature Reviews Physics, Vol. 1, Issue 2
  • DOI: 10.1038/s42254-018-0011-5

Direct evidence of ferromagnetism in a quantum anomalous Hall system
journal, May 2018


Topological phase transition induced by magnetic proximity effect in two dimensions
journal, July 2019

  • Zeng, Yijie; Wang, Luyang; Li, Song
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 39
  • DOI: 10.1088/1361-648x/ab28d1

Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect
journal, November 2015

  • Mogi, M.; Yoshimi, R.; Tsukazaki, A.
  • Applied Physics Letters, Vol. 107, Issue 18
  • DOI: 10.1063/1.4935075

Visualization of superparamagnetic dynamics in magnetic topological insulators
journal, November 2015

  • Lachman, Ella O.; Young, Andrea F.; Richardella, Anthony
  • Science Advances, Vol. 1, Issue 10
  • DOI: 10.1126/sciadv.1500740

Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi 2 Te 4
journal, January 2020


Enhancing the Quantum Anomalous Hall Effect by Magnetic Codoping in a Topological Insulator
journal, November 2017


Emergent functions of quantum materials
journal, September 2017

  • Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto
  • Nature Physics, Vol. 13, Issue 11
  • DOI: 10.1038/nphys4274

Quasiparticle Interference Studies of Quantum Materials
journal, June 2018

  • Avraham, Nurit; Reiner, Jonathan; Kumar-Nayak, Abhay
  • Advanced Materials, Vol. 30, Issue 41
  • DOI: 10.1002/adma.201707628

Electron-phonon coupling in topological surface states: The role of polar optical modes
text, January 2017