skip to main content

DOE PAGESDOE PAGES

Title: Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators

In this paper, we discuss error analysis for intrinsic quality factor (Q₀) and accelerating gradient (Eacc ) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q₀ and Eacc to be at the level of approximately 4% for input coupler coupling parameter β₁ in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q₀ uncertainty increases (decreases) with β₁ whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27], is independent of β₁. Overall, our estimated Q₀ uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27].
Authors:
ORCiD logo [1] ;  [1] ;  [1]
  1. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-07CH11359
Type:
Published Article
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 85; Journal Issue: 12; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; calibration; cavitation; error analysis; superconductivity; antennas
OSTI Identifier:
1179638
Alternate Identifier(s):
OSTI ID: 1214090