DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions

Abstract

Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [5];  [5];  [5];  [5];  [6];  [5];  [5];  [5] more »;  [5];  [5];  [3];  [3];  [3];  [2];  [2];  [7] « less
  1. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Roma, Roma (Italy). Dipartimento SBAI
  5. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  6. Univ. of Rochester, NY (United States). Lab. for Laser EnergeticsUniv. of Rochester, NY (United States). Lab. for Laser Energetics
  7. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1172483
Grant/Contract Number:  
NA0001857; FC52-08NA28752; 5-24431; NA0002035; 415935-G; 2012 C26A12CZH2; PRIN 2009FCC9MS; B597367
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 18; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Rosenberg, M. J., Rinderknecht, H. G., Hoffman, N. M., Amendt, P. A., Atzeni, S., Zylstra, A. B., Li, C. K., Seguin, F. H., Sio, H., Johnson, M. Gatu, Frenje, J. A., Petrasso, R. D., Glebov, V. Yu., Stoeckl, C., Seka, W., Marshall, F. J., Delettrez, J. A., Sangster, T. C., Betti, R., Goncharov, V. N., Meyerhofer, D. D., Skupsky, S., Bellei, C., Pino, J., Wilks, S. C., Kagan, G., Molvig, K., and Nikroo, A. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions. United States: N. p., 2014. Web. doi:10.1103/PhysRevLett.112.185001.
Rosenberg, M. J., Rinderknecht, H. G., Hoffman, N. M., Amendt, P. A., Atzeni, S., Zylstra, A. B., Li, C. K., Seguin, F. H., Sio, H., Johnson, M. Gatu, Frenje, J. A., Petrasso, R. D., Glebov, V. Yu., Stoeckl, C., Seka, W., Marshall, F. J., Delettrez, J. A., Sangster, T. C., Betti, R., Goncharov, V. N., Meyerhofer, D. D., Skupsky, S., Bellei, C., Pino, J., Wilks, S. C., Kagan, G., Molvig, K., & Nikroo, A. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions. United States. https://doi.org/10.1103/PhysRevLett.112.185001
Rosenberg, M. J., Rinderknecht, H. G., Hoffman, N. M., Amendt, P. A., Atzeni, S., Zylstra, A. B., Li, C. K., Seguin, F. H., Sio, H., Johnson, M. Gatu, Frenje, J. A., Petrasso, R. D., Glebov, V. Yu., Stoeckl, C., Seka, W., Marshall, F. J., Delettrez, J. A., Sangster, T. C., Betti, R., Goncharov, V. N., Meyerhofer, D. D., Skupsky, S., Bellei, C., Pino, J., Wilks, S. C., Kagan, G., Molvig, K., and Nikroo, A. Mon . "Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions". United States. https://doi.org/10.1103/PhysRevLett.112.185001. https://www.osti.gov/servlets/purl/1172483.
@article{osti_1172483,
title = {Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions},
author = {Rosenberg, M. J. and Rinderknecht, H. G. and Hoffman, N. M. and Amendt, P. A. and Atzeni, S. and Zylstra, A. B. and Li, C. K. and Seguin, F. H. and Sio, H. and Johnson, M. Gatu and Frenje, J. A. and Petrasso, R. D. and Glebov, V. Yu. and Stoeckl, C. and Seka, W. and Marshall, F. J. and Delettrez, J. A. and Sangster, T. C. and Betti, R. and Goncharov, V. N. and Meyerhofer, D. D. and Skupsky, S. and Bellei, C. and Pino, J. and Wilks, S. C. and Kagan, G. and Molvig, K. and Nikroo, A.},
abstractNote = {Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.},
doi = {10.1103/PhysRevLett.112.185001},
journal = {Physical Review Letters},
number = 18,
volume = 112,
place = {United States},
year = {Mon May 05 00:00:00 EDT 2014},
month = {Mon May 05 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 75 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Tests of the hydrodynamic equivalence of direct-drive implosions with different D2 and He3 mixtures
journal, May 2006

  • Rygg, J. R.; Frenje, J. A.; Li, C. K.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2192759

Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers
journal, September 1987

  • Cable, M. D.; Hatchett, S. P.
  • Journal of Applied Physics, Vol. 62, Issue 6
  • DOI: 10.1063/1.339850

Initial performance results of the OMEGA laser system
journal, January 1997


Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA
journal, October 2004

  • Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788875

Electro-diffusion in a plasma with two ion species
journal, August 2012

  • Kagan, Grigory; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4745869

Species separation in inertial confinement fusion fuels
journal, January 2013

  • Bellei, C.; Amendt, P. A.; Wilks, S. C.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773291

2-D Lagrangian studies of symmetry and stability of laser fusion targets
journal, December 1986


Electro-diffusion in a plasma with two ion species
text, January 2012


Revised Knudsen-layer reduction of fusion reactivity
journal, December 2013

  • Albright, B. J.; Molvig, Kim; Huang, C. -K.
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4833639

Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures
journal, September 2010


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Development and characterization of a pair of 30–40 ps x‐ray framing cameras
journal, January 1995

  • Bradley, D. K.; Bell, P. M.; Landen, O. L.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146268

A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D 3 He and DT implosions at the NIF
journal, October 2012

  • Rinderknecht, H. G.; Johnson, M. Gatu; Zylstra, A. B.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731000

Influence of high-energy ion loss on DT reaction rate in laser fusion pellets
journal, December 1979


Observations of the collapse of asymmetrically driven convergent shocks
journal, March 2008

  • Rygg, J. R.; Frenje, J. A.; Li, C. K.
  • Physics of Plasmas, Vol. 15, Issue 3
  • DOI: 10.1063/1.2892025

Improving cryogenic deuterium–tritium implosion performance on OMEGA
journal, May 2013

  • Sangster, T. C.; Goncharov, V. N.; Betti, R.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805088

Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions
journal, February 2012


Kinetic simulations of fuel ion transport in ICF target implosions
journal, November 2003

  • Larroche, O.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 27, Issue 2
  • DOI: 10.1140/epjd/e2003-00251-1

Fluid and kinetic simulation of inertial confinement fusion plasmas
journal, July 2005


Ten-inch manipulator-based neutron temporal diagnostic for cryogenic experiments on OMEGA
journal, March 2003

  • Stoeckl, C.; Glebov, V. Yu.; Roberts, S.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1534394

The Physics of Inertial Fusion
book, January 2004


Thermal electron transport in direct-drive laser fusion
journal, August 1986

  • Delettrez, J.
  • Canadian Journal of Physics, Vol. 64, Issue 8
  • DOI: 10.1139/p86-162

Spectrometry of charged particles from inertial-confinement-fusion plasmas
journal, February 2003

  • Séguin, F. H.; Frenje, J. A.; Li, C. K.
  • Review of Scientific Instruments, Vol. 74, Issue 2
  • DOI: 10.1063/1.1518141

Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions
journal, October 2012

  • Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4729672

Multibeam Stimulated Brillouin Scattering from Hot, Solid-Target Plasmas
journal, October 2002


Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e addition
journal, May 2009

  • Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3141062

Knudsen Layer Reduction of Fusion Reactivity
journal, August 2012


Ion Fokker-Planck simulation of D- 3 He gas target implosions
journal, December 2012


HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

Works referencing / citing this record:

The single-line-of-sight, time-resolved x-ray imager diagnostic on OMEGA
journal, October 2018

  • Theobald, W.; Sorce, C.; Bedzyk, M.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5036767

Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
journal, January 2020


Ion Species Stratification Within Strong Shocks in Two-Ion Plasmas
text, January 2017


Self-similar solutions for multi-species plasma mixing by gradient driven transport
journal, March 2018

  • Vold, E.; Kagan, G.; Simakov, A. N.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab38e

Kinetic effects on neutron generation in moderately collisional interpenetrating plasma flows
journal, January 2019

  • Higginson, D. P.; Ross, J. S.; Ryutov, D. D.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5048386

Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions
journal, May 2014

  • Rinderknecht, H. G.; Sio, H.; Li, C. K.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876615

Species separation and kinetic effects in collisional plasma shocks
journal, May 2014

  • Bellei, C.; Rinderknecht, H.; Zylstra, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876614

Deciphering the kinetic structure of multi-ion plasma shocks
journal, November 2017


Multi-species plasma transport in 1D direct-drive ICF simulations
journal, March 2019

  • Vold, E.; Rauenzahn, R.; Simakov, A. N.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5083157

Yield reduction via the Knudsen layer effect in a mixture of fuel and pusher material
journal, December 2018

  • McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaee5a

Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF
journal, December 2014

  • Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4905064

Shock-induced mix across an ideal interface
journal, April 2017

  • Bellei, C.; Amendt, P. A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4979904

Ion-kinetic simulations of D- 3 He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number
journal, January 2016

  • Larroche, O.; Rinderknecht, H. G.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939025

Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser
journal, January 2019

  • Bel’kov, S. A.; Bondarenko, S. V.; Demchenko, N. N.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaf062

Diffusion-dominated mixing in moderate convergence implosions
journal, June 2018


Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
journal, January 2015


Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
journal, June 2015

  • Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921935

Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions
journal, September 2015


Fuel-ion diffusion in shock-driven inertial confinement fusion implosions
journal, September 2019

  • Sio, Hong; Li, Chikang; Parker, Cody E.
  • Matter and Radiation at Extremes, Vol. 4, Issue 5
  • DOI: 10.1063/1.5090783

Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment
journal, November 2019

  • Higginson, D. P.; Amendt, P.; Meezan, N.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5110512

Ion species stratification within strong shocks in two-ion plasmas
journal, March 2018

  • Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5020156

Deciphering the Kinetic Structure of Multi-Ion Plasma Shocks
text, January 2017


Kinetic physics in ICF: present understanding and future directions
journal, April 2018

  • Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab79f

Nuclear yield reduction in inertial confinement fusion exploding-pusher targets explained by fuel-pusher mixing through hybrid kinetic-fluid modeling
journal, September 2018


Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems
journal, May 2017

  • Beckwith, M. A.; Jiang, S.; Schropp, A.
  • Review of Scientific Instruments, Vol. 88, Issue 5
  • DOI: 10.1063/1.4982166

Probing ion species separation and ion thermal decoupling in shock-driven implosions using multiple nuclear reaction histories
journal, July 2019

  • Sio, H.; Larroche, O.; Atzeni, S.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5097605

Spectral composition of thermonuclear particle and recoil nuclear emissions from laser fusion targets intended for modern ignition experiments
journal, June 2018

  • Gus’kov, S. Yu; Il’in, D. V.; Perlado, J. M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 8
  • DOI: 10.1088/1361-6587/aac739

The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions
journal, November 2014

  • Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
  • Physics of Plasmas, Vol. 21, Issue 11
  • DOI: 10.1063/1.4900621

Diffusion-driven fluid dynamics in ideal gases and plasmas
journal, June 2018

  • Vold, E. L.; Yin, L.; Taitano, W.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5029932

Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
journal, May 2018

  • Taitano, W. T.; Simakov, A. N.; Chacón, L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024402

Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF
journal, August 2015

  • Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928382