DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and Dynamics of Colliding Plasma Jets

Abstract

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [4];  [4];  [4];  [4];  [3];  [3];  [3];  [3] more »;  [5];  [5];  [5];  [6] « less
  1. Massachusetts Institute of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center
  2. Lawrence Livermore National Laboratory, Livermore, California
  3. Lab. for Laser Energetics, Univ. of Rochester, NY (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Univ. of Michigan, Ann Arbor, MI (United States)
  6. Laboratoire pour l’Utilisation des Lasers Intenses, CNRS–CEA–Université Paris VI–Ecole Polytechnique (France)
Publication Date:
Research Org.:
MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1172383
Grant/Contract Number:  
NA0002035; FG52-07NA28059; FG03-03SF22691
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 23; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Li, C., Ryutov, D., Hu, S., Rosenberg, M., Zylstra, A., Seguin, F., Frenje, J., Casey, D., Gatu Johnson, M., Manuel, M., Rinderknecht, H., Petrasso, R., Amendt, P., Park, H., Remington, B., Wilks, S., Betti, R., Froula, D., Knauer, J., Meyerhofer, D., Drake, R., Kuranz, C., Young, R., and Koenig, M. Structure and Dynamics of Colliding Plasma Jets. United States: N. p., 2013. Web. doi:10.1103/PhysRevLett.111.235003.
Li, C., Ryutov, D., Hu, S., Rosenberg, M., Zylstra, A., Seguin, F., Frenje, J., Casey, D., Gatu Johnson, M., Manuel, M., Rinderknecht, H., Petrasso, R., Amendt, P., Park, H., Remington, B., Wilks, S., Betti, R., Froula, D., Knauer, J., Meyerhofer, D., Drake, R., Kuranz, C., Young, R., & Koenig, M. Structure and Dynamics of Colliding Plasma Jets. United States. https://doi.org/10.1103/PhysRevLett.111.235003
Li, C., Ryutov, D., Hu, S., Rosenberg, M., Zylstra, A., Seguin, F., Frenje, J., Casey, D., Gatu Johnson, M., Manuel, M., Rinderknecht, H., Petrasso, R., Amendt, P., Park, H., Remington, B., Wilks, S., Betti, R., Froula, D., Knauer, J., Meyerhofer, D., Drake, R., Kuranz, C., Young, R., and Koenig, M. Sun . "Structure and Dynamics of Colliding Plasma Jets". United States. https://doi.org/10.1103/PhysRevLett.111.235003. https://www.osti.gov/servlets/purl/1172383.
@article{osti_1172383,
title = {Structure and Dynamics of Colliding Plasma Jets},
author = {Li, C. and Ryutov, D. and Hu, S. and Rosenberg, M. and Zylstra, A. and Seguin, F. and Frenje, J. and Casey, D. and Gatu Johnson, M. and Manuel, M. and Rinderknecht, H. and Petrasso, R. and Amendt, P. and Park, H. and Remington, B. and Wilks, S. and Betti, R. and Froula, D. and Knauer, J. and Meyerhofer, D. and Drake, R. and Kuranz, C. and Young, R. and Koenig, M.},
abstractNote = {Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.},
doi = {10.1103/PhysRevLett.111.235003},
journal = {Physical Review Letters},
number = 23,
volume = 111,
place = {United States},
year = {Sun Dec 01 00:00:00 EST 2013},
month = {Sun Dec 01 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetic field advection in two interpenetrating plasma streams
journal, March 2013

  • Ryutov, D. D.; Kugland, N. L.; Levy, M. C.
  • Physics of Plasmas, Vol. 20, Issue 3
  • DOI: 10.1063/1.4794200

Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers
journal, March 2012


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas
journal, September 2012

  • Kugland, N. L.; Ryutov, D. D.; Chang, P-Y.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2434

Mach reflection in a warm dense plasma
journal, November 2010

  • Foster, J. M.; Rosen, P. A.; Wilde, B. H.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3499690

Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
journal, May 2012

  • Mondal, S.; Narayanan, V.; Ding, W. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 21
  • DOI: 10.1073/pnas.1200753109

Time-Resolved Characterization of the Formation of a Collisionless Shock
journal, May 2013


Megagauss Magnetic Field Generation and Plasma Jet Formation on Solid Targets Irradiated by an Ultraintense Picosecond Laser Pulse
journal, July 1998


Experimental astrophysics with high power lasers and Z pinches
journal, August 2006

  • Remington, Bruce A.; Drake, R. Paul; Ryutov, Dmitri D.
  • Reviews of Modern Physics, Vol. 78, Issue 3
  • DOI: 10.1103/RevModPhys.78.755

Radiative Jet Experiments of Astrophysical Interest Using Intense Lasers
journal, September 1999


High-Energy-Density Laboratory Astrophysics Studies of Jets and Bow Shocks
journal, November 2005

  • Foster, J. M.; Wilde, B. H.; Rosen, P. A.
  • The Astrophysical Journal, Vol. 634, Issue 1
  • DOI: 10.1086/498846

Astrophysical jet experiments
journal, November 2008


Jet Deflection via Crosswinds: Laboratory Astrophysical Studies
journal, December 2004

  • Lebedev, S. V.; Ampleford, D.; Ciardi, A.
  • The Astrophysical Journal, Vol. 616, Issue 2
  • DOI: 10.1086/423730

Impact of the Hall Effect on High-Energy-Density Plasma Jets
journal, January 2013


Experimental evidence of multimaterial jet formation with lasers
journal, November 2010

  • Nicolaï, Ph.; Stenz, C.; Tikhonchuk, V.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3511774

Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

Magnetohydrodynamic scaling: From astrophysics to the laboratory
journal, May 2001

  • Ryutov, D. D.; Remington, B. A.; Robey, H. F.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1344562

Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks
journal, May 2012

  • Ross, J. S.; Glenzer, S. H.; Amendt, P.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694124

On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas
journal, December 2007

  • Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 673, Issue 1
  • DOI: 10.1086/527374

Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation
journal, March 2010

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3372138

Ion Acceleration in Non-Relativistic Astrophysical Shocks
journal, December 2011


Using intense lasers to simulate aspects of accretion discs and outflows in astrophysics
journal, December 2010


Charged-Particle Probing of X-ray-Driven Inertial-Fusion Implosions
journal, January 2010


Experimental Investigation of High-Mach-Number 3D Hydrodynamic Jets at the National Ignition Facility
journal, March 2005


Supersonic-Jet Experiments Using a High-Energy Laser
journal, December 2007


Collisional current drive in two interpenetrating plasma jets
journal, October 2011

  • Ryutov, D. D.; Kugland, N. L.; Park, H. -S.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3646325

Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system
journal, May 1996

  • Soures, J. M.; McCrory, R. L.; Verdon, C. P.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871662

Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets
journal, December 2000


Astrophysical Jet Experiments with Colliding Laser‐produced Plasmas
journal, March 2008

  • Gregory, C. D.; Howe, J.; Loupias, B.
  • The Astrophysical Journal, Vol. 676, Issue 1
  • DOI: 10.1086/527352

Core performance and mix in direct-drive spherical implosions with high uniformity
journal, May 2001

  • Meyerhofer, D. D.; Delettrez, J. A.; Epstein, R.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1350964

Observations of Electromagnetic Fields and Plasma Flow in Hohlraums with Proton Radiography
journal, May 2009


Proton imaging detection of transient electromagnetic fields in laser-plasma interactions (invited)
journal, March 2003

  • Borghesi, M.; Schiavi, A.; Campbell, D. H.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1534390

Proton deflectometry of a magnetic reconnection geometry
journal, April 2010

  • Willingale, L.; Nilson, P. M.; Kaluza, M. C.
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3377787

Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

Characterization of single and colliding laser-produced plasma bubbles using Thomson scattering and proton radiography
journal, November 2012


Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics
journal, May 2013

  • Kugland, N. L.; Ross, J. S.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4804548

Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography
journal, September 2006


Works referencing / citing this record:

P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines
journal, July 2017


Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows
journal, June 2019


The influence of the Hall term on the development of magnetized laser-produced plasma jets
journal, April 2018

  • Hamlin, N. D.; Seyler, C. E.; Khiar, B.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5017202

Observation of collisionless-to-collisional transition in colliding plasma jets with optical Thomson scattering
journal, January 2019

  • Young, R. P.; Kuranz, C. C.; Froula, D.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5047218

Anomalous plasma acceleration in colliding high-power laser-produced plasmas
journal, September 2019

  • Morita, T.; Nagashima, K.; Edamoto, M.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5100197

MPRAD: A Monte Carlo and ray-tracing code for the proton radiography in high-energy-density plasma experiments
journal, December 2019

  • Lu, Yingchao; Li, Hui; Flippo, Kirk A.
  • Review of Scientific Instruments, Vol. 90, Issue 12
  • DOI: 10.1063/1.5123392

Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
journal, January 2020

  • Lu, Yingchao; Li, Shengtai; Li, Hui
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5126149

Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
journal, January 2020


Laboratory Analog of Heavy Jets Impacting a Denser Medium in Herbig–Haro (HH) Objects
journal, November 2018


Anomalous plasma acceleration in colliding high-power laser-produced plasmas
text, January 2019