DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2

Abstract

Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered LixNi2–4x/3Sbx/3O2 (x = 1.00–1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies disclose a complex nanostructure pattern of Li–Sb and Ni–Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li–Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [1]
  1. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  2. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1167008
Alternate Identifier(s):
OSTI ID: 1224203
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Nano Letters
Additional Journal Information:
Journal Name: Nano Letters Journal Volume: 15 Journal Issue: 1; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; cathode; lithium-excess; percolation; nano

Citation Formats

Twu, Nancy, Li, Xin, Urban, Alexander, Balasubramanian, Mahalingam, Lee, Jinhyuk, Liu, Lei, and Ceder, Gerbrand. Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2. United States: N. p., 2014. Web. doi:10.1021/nl5040754.
Twu, Nancy, Li, Xin, Urban, Alexander, Balasubramanian, Mahalingam, Lee, Jinhyuk, Liu, Lei, & Ceder, Gerbrand. Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2. United States. https://doi.org/10.1021/nl5040754
Twu, Nancy, Li, Xin, Urban, Alexander, Balasubramanian, Mahalingam, Lee, Jinhyuk, Liu, Lei, and Ceder, Gerbrand. Mon . "Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2". United States. https://doi.org/10.1021/nl5040754.
@article{osti_1167008,
title = {Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2},
author = {Twu, Nancy and Li, Xin and Urban, Alexander and Balasubramanian, Mahalingam and Lee, Jinhyuk and Liu, Lei and Ceder, Gerbrand},
abstractNote = {Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered LixNi2–4x/3Sbx/3O2 (x = 1.00–1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies disclose a complex nanostructure pattern of Li–Sb and Ni–Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li–Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.},
doi = {10.1021/nl5040754},
journal = {Nano Letters},
number = 1,
volume = 15,
place = {United States},
year = {Mon Dec 22 00:00:00 EST 2014},
month = {Mon Dec 22 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/nl5040754

Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
journal, September 2007

  • Li, J.; Ma, P. C.; Chow, W. S.
  • Advanced Functional Materials, Vol. 17, Issue 16
  • DOI: 10.1002/adfm.200700065

Lithium diffusion mechanisms in layered intercalation compounds
journal, July 2001


Geometrical percolation threshold of overlapping ellipsoids
journal, July 1995


Short- and Long-Range Order in the Positive Electrode Material, Li(NiMn) 0.5 O 2 :  A Joint X-ray and Neutron Diffraction, Pair Distribution Function Analysis and NMR Study
journal, May 2005

  • Bréger, Julien; Dupré, Nicolas; Chupas, Peter J.
  • Journal of the American Chemical Society, Vol. 127, Issue 20
  • DOI: 10.1021/ja050697u

Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2
journal, November 2007


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

The relationship between the composition of lithium nickel oxide and the loss of reversibility during the first cycle
journal, June 1996


Effect of High Voltage on the Structure and Electrochemistry of LiNi 0.5 Mn 0.5 O 2 :  A Joint Experimental and Theoretical Study
journal, October 2006

  • Bréger, Julien; Meng, Ying S.; Hinuma, Yoyo
  • Chemistry of Materials, Vol. 18, Issue 20
  • DOI: 10.1021/cm060886r

The UWXAFS analysis package: philosophy and details
journal, March 1995


Electrochemical Synthesis of a Lithium-Rich Rock-Salt-Type Oxide Li 5 W 2 O 7 with Reversible Deintercalation Properties
journal, December 2013

  • Pralong, Valerie; Venkatesh, Gopal; Malo, Sylvie
  • Inorganic Chemistry, Vol. 53, Issue 1
  • DOI: 10.1021/ic402543e

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Reinvestigation of Li 2 MnO 3 Structure: Electron Diffraction and High Resolution TEM
journal, September 2009

  • Boulineau, A.; Croguennec, L.; Delmas, C.
  • Chemistry of Materials, Vol. 21, Issue 18
  • DOI: 10.1021/cm900998n

Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties
journal, January 2012

  • Zvereva, Elena A.; Evstigneeva, Maria A.; Nalbandyan, Vladimir B.
  • Dalton Trans., Vol. 41, Issue 2
  • DOI: 10.1039/C1DT11322D

Understanding Li Diffusion in Li-Intercalation Compounds
journal, May 2012

  • Van der Ven, Anton; Bhattacharya, Jishnu; Belak, Anna A.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200329r

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Characterization of Li1+yNixCo1−2xMnxO2 positive active materials for lithium ion batteries
journal, August 2005


Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


Synthesis–Structure–Property Relations in Layered, “Li-excess” Oxides Electrode Materials Li[Li[sub 1/3−2x/3]Ni[sub x]Mn[sub 2/3−x/3]]O[sub 2] (x=1/3, 1/4, and 1/5)
journal, January 2010

  • Fell, Christopher R.; Carroll, Kyler J.; Chi, Miaofang
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3473830

Cathode materials: A personal perspective
journal, December 2007


Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation
journal, October 2004

  • Reed, John; Ceder, Gerbrand
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020733x

Synthesis, Electrochemical Properties, and Reaction Mechanisms of New Lithium-Excess Transition Metal Oxides With Cation Disordered Rock-Salt-Type Structure
journal, October 2013

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Endo, Daisuke
  • ECS Meeting Abstracts, Vol. MA2013-02, Issue 12
  • DOI: 10.1149/MA2013-02/12/874

The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes
journal, May 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400478

Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2
journal, January 1992

  • Reimers, Jan N.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 139, Issue 8, p. 2091-2097
  • DOI: 10.1149/1.2221184

A Honeycomb-Layered Na 3 Ni 2 SbO 6 : A High-Rate and Cycle-Stable Cathode for Sodium-Ion Batteries
journal, July 2014


Layered Mixed Transition Metal Oxide Cathodes with Reduced Cobalt Content for Lithium Ion Batteries
journal, December 2008

  • Xiao, Jie; Chernova, Natasha A.; Whittingham, M. Stanley
  • Chemistry of Materials, Vol. 20, Issue 24
  • DOI: 10.1021/cm802316d

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Lithium-Rich Rock-Salt-Type Vanadate as Energy Storage Cathode: Li 2– x VO 3
journal, December 2011

  • Pralong, Valerie; Gopal, Venkatesh; Caignaert, Vincent
  • Chemistry of Materials, Vol. 24, Issue 1
  • DOI: 10.1021/cm203281q

Layered Lithium Insertion Material of LiNi 1/2 Mn 1/2 O 2 : A Possible Alternative to LiCoO 2 for Advanced Lithium-Ion Batteries
journal, August 2001

  • Ohzuku, Tsutomu; Makimura, Yoshinari
  • Chemistry Letters, Vol. 30, Issue 8
  • DOI: 10.1246/cl.2001.744

Layered Lithium Insertion Material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for Lithium-Ion Batteries
journal, July 2001

  • Ohzuku, Tsutomu; Makimura, Yoshinari
  • Chemistry Letters, Vol. 30, Issue 7
  • DOI: 10.1246/cl.2001.642

Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material
journal, March 2010


Phase diagrams of lithium transition metal oxides: investigations from first principles
journal, September 1999