DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst

Abstract

The reduction of protons into dihydrogen is important because of its potential use in a wide range of energy applications. The preparation of efficient and cheap catalysts for this reaction is one of the issues that need to be tackled to allow the widespread use of hydrogen as an energy carrier. In this paper, we report the study of an amorphous molybdenum sulfide (MoS x ) proton reducing electrocatalyst under functional conditions, using in situ X-ray absorption spectroscopy. We probed the local and electronic structures of both the molybdenum and sulfur elements for the as prepared material as well as the precatalytic and catalytic states. The as prepared material is very similar to MoS 3 and remains unmodified under functional conditions (pH = 2 aqueous HNO 3 ) in the precatalytic state (+0.3 V vs RHE). In its catalytic state (-0.3 V vs RHE), the film is reduced to an amorphous form of MoS 2 and shows spectroscopic features that indicate the presence of terminal disulfide units. These units are formed concomitantly with the release of hydrogen, and we suggest that the rate-limiting step of the HER is the reduction and protonation of these disulfide units. These results show themore » implication of terminal disulfide chemical motifs into HER driven by transition-metal sulfides and provide insight into their reaction mechanism.« less

Authors:
 [1];  [2];  [2];  [3];  [3];  [2];  [3]
  1. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette, France
  2. Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-LSCI, BCH 3305, Lausanne, CH 1015, Switzerland
  3. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1165886
Alternate Identifier(s):
OSTI ID: 1257354; OSTI ID: 1407325
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Name: Journal of the American Chemical Society Journal Volume: 137 Journal Issue: 1; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lassalle-Kaiser, Benedikt, Merki, Daniel, Vrubel, Heron, Gul, Sheraz, Yachandra, Vittal K., Hu, Xile, and Yano, Junko. Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst. United States: N. p., 2014. Web. doi:10.1021/ja510328m.
Lassalle-Kaiser, Benedikt, Merki, Daniel, Vrubel, Heron, Gul, Sheraz, Yachandra, Vittal K., Hu, Xile, & Yano, Junko. Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst. United States. https://doi.org/10.1021/ja510328m
Lassalle-Kaiser, Benedikt, Merki, Daniel, Vrubel, Heron, Gul, Sheraz, Yachandra, Vittal K., Hu, Xile, and Yano, Junko. Fri . "Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst". United States. https://doi.org/10.1021/ja510328m.
@article{osti_1165886,
title = {Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst},
author = {Lassalle-Kaiser, Benedikt and Merki, Daniel and Vrubel, Heron and Gul, Sheraz and Yachandra, Vittal K. and Hu, Xile and Yano, Junko},
abstractNote = {The reduction of protons into dihydrogen is important because of its potential use in a wide range of energy applications. The preparation of efficient and cheap catalysts for this reaction is one of the issues that need to be tackled to allow the widespread use of hydrogen as an energy carrier. In this paper, we report the study of an amorphous molybdenum sulfide (MoS x ) proton reducing electrocatalyst under functional conditions, using in situ X-ray absorption spectroscopy. We probed the local and electronic structures of both the molybdenum and sulfur elements for the as prepared material as well as the precatalytic and catalytic states. The as prepared material is very similar to MoS 3 and remains unmodified under functional conditions (pH = 2 aqueous HNO 3 ) in the precatalytic state (+0.3 V vs RHE). In its catalytic state (-0.3 V vs RHE), the film is reduced to an amorphous form of MoS 2 and shows spectroscopic features that indicate the presence of terminal disulfide units. These units are formed concomitantly with the release of hydrogen, and we suggest that the rate-limiting step of the HER is the reduction and protonation of these disulfide units. These results show the implication of terminal disulfide chemical motifs into HER driven by transition-metal sulfides and provide insight into their reaction mechanism.},
doi = {10.1021/ja510328m},
journal = {Journal of the American Chemical Society},
number = 1,
volume = 137,
place = {United States},
year = {Fri Dec 19 00:00:00 EST 2014},
month = {Fri Dec 19 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/ja510328m

Citation Metrics:
Cited by: 198 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts
journal, November 2008

  • Jaramillo, Thomas F.; Bonde, Jacob; Zhang, Jingdong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 45, p. 17492-17498
  • DOI: 10.1021/jp802695e

The Future of Energy Supply: Challenges and Opportunities
journal, January 2007

  • Armaroli, Nicola; Balzani, Vincenzo
  • Angewandte Chemie International Edition, Vol. 46, Issue 1-2
  • DOI: 10.1002/anie.200602373

Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
journal, January 2011

  • Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 4, Issue 10, 3878
  • DOI: 10.1039/c1ee01970h

Structure and Magnetism of the Quasi-1-d K 4 Cu(MoO 4 ) 3 and the Structure of K 4 Zn(MoO 4 ) 3
journal, September 2011

  • Menard, Melissa C.; Ishii, Rieko; Nakatsuji, Satoru
  • Inorganic Chemistry, Vol. 50, Issue 18
  • DOI: 10.1021/ic200476n

Structure of Amorphous MoS3
journal, June 1995

  • Weber, Th.; Muijsers, J. C.; Niemantsverdriet, J. W.
  • The Journal of Physical Chemistry, Vol. 99, Issue 22
  • DOI: 10.1021/j100022a037

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Mo K-edge EXAFS and S K-edge absorption studies of the amorphous molybdenum sulfides MoS4.7, MoS3, and MoS3.cntdot.nH2O (n .apprx. 2)
journal, October 1995

  • Hibble, Simon J.; Rice, David A.; Pickup, David M.
  • Inorganic Chemistry, Vol. 34, Issue 21
  • DOI: 10.1021/ic00125a006

Low-Temperature Hydrogen Interaction with Amorphous Molybdenum Sulfides MoS x
journal, February 2009

  • Afanasiev, P.; Jobic, H.; Lorentz, C.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 10
  • DOI: 10.1021/jp809300y

Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution
journal, January 2012

  • Laursen, Anders B.; Kegnæs, Søren; Dahl, Søren
  • Energy & Environmental Science, Vol. 5, Issue 2
  • DOI: 10.1039/c2ee02618j

Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
journal, April 2014

  • Popczun, Eric J.; Read, Carlos G.; Roske, Christopher W.
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402646

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Amorphous MoS3: clusters or chains? The structural evidence
journal, July 1998


Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst
journal, August 2013


The Crystal Structure of Molybdenite
journal, June 1923

  • Dickinson, Roscoe G.; Pauling, Linus
  • Journal of the American Chemical Society, Vol. 45, Issue 6
  • DOI: 10.1021/ja01659a020

Polarization-Dependent EXAFS Measurements of an α-Molybdenum Trioxide Single Crystal
journal, January 2002

  • Ijima, K.; Ohminami, Y.; Suzuki, S.
  • Topics in Catalysis, Vol. 18, Issue 1/2, p. 125-127
  • DOI: 10.1023/A:1013801531939

Desulfurization of Organic Sulfur Compounds Mediated by a Molybdenum/Cobalt/Sulfur Cluster
journal, May 1994

  • Riaz, Umar; Curnow, Owen J.; Curtis, M. David
  • Journal of the American Chemical Society, Vol. 116, Issue 10
  • DOI: 10.1021/ja00089a025

EXAFS studies of amorphous molybdenum and tungsten trisulfides and triselenides
journal, April 1984

  • Cramer, S. P.; Liang, K. S.; Jacobson, A. J.
  • Inorganic Chemistry, Vol. 23, Issue 9
  • DOI: 10.1021/ic00177a010

Preparation and characterization of molybdenum sulfide supported on β-zeolites obtained from [Mo3S4(H2O)9]4+ precursor
journal, June 2006


A Janus cobalt-based catalytic material for electro-splitting of water
journal, August 2012

  • Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3385

Molybdenum−Sulfur Dimers as Electrocatalysts for the Production of Hydrogen at Low Overpotentials
journal, September 2005

  • Appel, Aaron M.; DuBois, Daniel L.; Rakowski DuBois, M.
  • Journal of the American Chemical Society, Vol. 127, Issue 36
  • DOI: 10.1021/ja054034o

Hydrogen evolution catalyzed by MoS3 and MoS2 particles
journal, January 2012

  • Vrubel, Heron; Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02835b

EXAFS analysis using FEFF and FEFFIT
journal, March 2001


A Realizable Renewable Energy Future
journal, July 1999


In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction
journal, June 2013

  • Gorlin, Yelena; Lassalle-Kaiser, Benedikt; Benck, Jesse D.
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja3104632

Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water
journal, December 2013

  • Di Giovanni, Carlo; Wang, Wei-An; Nowak, Sophie
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs4011698

Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst
journal, April 2012

  • Bediako, D. Kwabena; Lassalle-Kaiser, Benedikt; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja301018q

Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis
journal, September 2005

  • Genuit, Daisy; Bezverkhyy, Igor; Afanasiev, Pavel
  • Journal of Solid State Chemistry, Vol. 178, Issue 9
  • DOI: 10.1016/j.jssc.2005.06.016

Structural and Electronic Study of an Amorphous MoS3 Hydrogen-Generation Catalyst on a Quantum-Controlled Photosensitizer
journal, September 2011

  • Tang, Ming L.; Grauer, David C.; Lassalle-Kaiser, Benedikt
  • Angewandte Chemie International Edition, Vol. 50, Issue 43
  • DOI: 10.1002/anie.201104412

Chemistry of Personalized Solar Energy
journal, November 2009


A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
journal, January 2011

  • Merki, Daniel; Fierro, Stéphane; Vrubel, Heron
  • Chem. Sci., Vol. 2, Issue 7, p. 1262-1267
  • DOI: 10.1039/C1SC00117E

Theoretical approaches to x-ray absorption fine structure
journal, July 2000


Homogeneous reductions of nitrogen-containing substrates catalyzed by molybdenum(IV) complexes with .mu.-sulfido ligands
journal, May 1986

  • Casewit, C. J.; Coons, D. E.; Wright, L. L.
  • Organometallics, Vol. 5, Issue 5
  • DOI: 10.1021/om00136a019

Preparation of trinuclear molybdenum(IV) ion, Mo3S4+4, and x-ray structure of Ca[Mo3S4 {HN(CH2CO2)2}3] · 11.5H2O
journal, January 1986


Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers
journal, November 2012

  • Dinh Nguyen, Minh Thu; Ranjbari, Alireza; Catala, Laure
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.04.040

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690