DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies

Abstract

Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). Here, by incorporating an oligo-histidine H6 sequence, we developed two PAs that self-assembled into distinct morphologies on the nanoscale, either as nanofibers or spherical micelles, based on the incorporation of the aliphatic tail on the N-terminus or near the C-terminus, respectively. Both cylinder and sphere-forming PAs demonstrated reversible disassembly between pH 6.0 and 6.5 upon protonation of the histidine residues in acidic solutions. These PAs were then characterized and assessed for their potential to encapsulate hydrophobic chemotherapies. The H6-based nanofiber assemblies encapsulated camptothecin (CPT) with up to 60% efficiency, a 7-fold increase in CPT encapsulation relative to spherical micelles. Additionally, pH-sensitive nanofibers showed improved tumor accumulation over both spherical micelles and nanofibers that did not change morphologies in acidic environments. We have demonstrated that the morphological transitions upon changes in pH of supramolecular nanostructures affect drug encapsulation and tumor accumulation. Lastly, our findings also suggest that these supramolecular events can be tuned by molecular design to improve the pharmacologic properties ofmore » nanomedicines.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6]
  1. Northwestern Univ., Chicago, IL (United States). Inst. for BioNanotechnology in Medicine, Dept. of Materials Science and Engineering
  2. Northwestern Univ., Chicago, IL (United States). Inst. for BioNanotechnology in Medicine; Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  3. Northwestern Univ., Chicago, IL (United States). Inst. for BioNanotechnology in Medicine; Northwestern Univ., Chicago, IL (United States). Feinberg School of Medicine, Dept. of Medicine
  4. Northwestern Univ., Chicago, IL (United States). Feinberg School of Medicine, Dept. of Medicine
  5. Univ. of Wisconsin, Madison, WI (United States). School of Medicine and Public Health, Carbone Cancer Center and Dept. of Medicine
  6. Northwestern Univ., Chicago, IL (United States). Inst. for BioNanotechnology in Medicine, Dept. of Materials Science and Engineering; Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Northwestern Univ., Chicago, IL (United States). Feinberg School of Medicine, Dept. of Medicine
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC); National Institutes of Health (NIH); Department of Defense (DoD)
OSTI Identifier:
1165620
Grant/Contract Number:  
AC02-06CH11357; 5U54CA151880-03; 5R01DE015920-09; W81XWH-10-1-0503
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 136; Journal Issue: 42; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 60 APPLIED LIFE SCIENCES

Citation Formats

Moyer, Tyson J., Finbloom, Joel A., Chen, Feng, Toft, Daniel J., Cryns, Vincent L., and Stupp, Samuel I. pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies. United States: N. p., 2014. Web. doi:10.1021/ja5042429.
Moyer, Tyson J., Finbloom, Joel A., Chen, Feng, Toft, Daniel J., Cryns, Vincent L., & Stupp, Samuel I. pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies. United States. https://doi.org/10.1021/ja5042429
Moyer, Tyson J., Finbloom, Joel A., Chen, Feng, Toft, Daniel J., Cryns, Vincent L., and Stupp, Samuel I. Mon . "pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies". United States. https://doi.org/10.1021/ja5042429. https://www.osti.gov/servlets/purl/1165620.
@article{osti_1165620,
title = {pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies},
author = {Moyer, Tyson J. and Finbloom, Joel A. and Chen, Feng and Toft, Daniel J. and Cryns, Vincent L. and Stupp, Samuel I.},
abstractNote = {Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). Here, by incorporating an oligo-histidine H6 sequence, we developed two PAs that self-assembled into distinct morphologies on the nanoscale, either as nanofibers or spherical micelles, based on the incorporation of the aliphatic tail on the N-terminus or near the C-terminus, respectively. Both cylinder and sphere-forming PAs demonstrated reversible disassembly between pH 6.0 and 6.5 upon protonation of the histidine residues in acidic solutions. These PAs were then characterized and assessed for their potential to encapsulate hydrophobic chemotherapies. The H6-based nanofiber assemblies encapsulated camptothecin (CPT) with up to 60% efficiency, a 7-fold increase in CPT encapsulation relative to spherical micelles. Additionally, pH-sensitive nanofibers showed improved tumor accumulation over both spherical micelles and nanofibers that did not change morphologies in acidic environments. We have demonstrated that the morphological transitions upon changes in pH of supramolecular nanostructures affect drug encapsulation and tumor accumulation. Lastly, our findings also suggest that these supramolecular events can be tuned by molecular design to improve the pharmacologic properties of nanomedicines.},
doi = {10.1021/ja5042429},
journal = {Journal of the American Chemical Society},
number = 42,
volume = 136,
place = {United States},
year = {Mon Oct 13 00:00:00 EDT 2014},
month = {Mon Oct 13 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 137 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanocarriers as an emerging platform for cancer therapy
journal, December 2007

  • Peer, Dan; Karp, Jeffrey M.; Hong, Seungpyo
  • Nature Nanotechnology, Vol. 2, Issue 12
  • DOI: 10.1038/nnano.2007.387

Nanoparticle therapeutics: an emerging treatment modality for cancer
journal, September 2008

  • Davis, Mark E.; Chen, Zhuo; Shin, Dong M.
  • Nature Reviews Drug Discovery, Vol. 7, Issue 9
  • DOI: 10.1038/nrd2614

Shape effects of filaments versus spherical particles in flow and drug delivery
journal, March 2007

  • Geng, Yan; Dalhaimer, Paul; Cai, Shenshen
  • Nature Nanotechnology, Vol. 2, Issue 4
  • DOI: 10.1038/nnano.2007.70

Micelles of Different Morphologies—Advantages of Worm-like Filomicelles of PEO-PCL in Paclitaxel Delivery
journal, June 2007

  • Cai, Shenshen; Vijayan, Kandaswamy; Cheng, Debbie
  • Pharmaceutical Research, Vol. 24, Issue 11
  • DOI: 10.1007/s11095-007-9335-z

Flexible Filaments for in Vivo Imaging and Delivery: Persistent Circulation of Filomicelles Opens the Dosage Window for Sustained Tumor Shrinkage
journal, March 2009

  • Christian, David A.; Cai, Shenshen; Garbuzenko, Olga B.
  • Molecular Pharmaceutics, Vol. 6, Issue 5
  • DOI: 10.1021/mp900022m

The effect of particle design on cellular internalization pathways
journal, August 2008

  • Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 33, p. 11613-11618
  • DOI: 10.1073/pnas.0801763105

Drug Resistance and Cellular Adaptation to Tumor Acidic pH Microenvironment
journal, October 2011

  • Wojtkowiak, Jonathan W.; Verduzco, Daniel; Schramm, Karla J.
  • Molecular Pharmaceutics, Vol. 8, Issue 6
  • DOI: 10.1021/mp200292c

Polymeric anticancer drugs with pH-controlled activation
journal, June 2004


N-Boc-Histidine-Capped PLGA-PEG-PLGA as a Smart Polymer for Drug Delivery Sensitive to Tumor Extracellular pH
journal, June 2010

  • Chang, Guangtao; Li, Chong; Lu, Weiyue
  • Macromolecular Bioscience, Vol. 10, Issue 10
  • DOI: 10.1002/mabi.201000117

In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles
journal, January 2010

  • Koo, Heebeom; Lee, Hyejung; Lee, Sojin
  • Chemical Communications, Vol. 46, Issue 31
  • DOI: 10.1039/c0cc01413c

Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice
journal, August 2005


Physicochemical characteristics of pH-sensitive poly(l-Histidine)-b-poly(ethylene glycol)/poly(l-Lactide)-b-poly(ethylene glycol) mixed micelles
journal, March 2008


Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine)
journal, October 2007


Functional Supramolecular Polymers
journal, February 2012


Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
journal, January 2010

  • Cui, Honggang; Webber, Matthew J.; Stupp, Samuel I.
  • Biopolymers, Vol. 94, Issue 1, p. 1-18
  • DOI: 10.1002/bip.21328

Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels
journal, January 2012

  • Matson, John B.; Newcomb, Christina J.; Bitton, Ronit
  • Soft Matter, Vol. 8, Issue 13
  • DOI: 10.1039/c2sm07420f

Fine-Tuning the pH Trigger of Self-Assembly
journal, February 2012

  • Ghosh, Arijit; Haverick, Mark; Stump, Keith
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja211113n

Structural properties of soluble peptide amphiphile micelles
journal, January 2011

  • Trent, Amanda; Marullo, Rachel; Lin, Brian
  • Soft Matter, Vol. 7, Issue 20
  • DOI: 10.1039/c1sm05862b

Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles
journal, January 2006

  • Kokkoli, Efrosini; Mardilovich, Anastasia; Wedekind, Alison
  • Soft Matter, Vol. 2, Issue 12
  • DOI: 10.1039/b608929a

Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials
journal, April 2002

  • Hartgerink, J. D.; Beniash, E.; Stupp, S. I.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 8, p. 5133-5138
  • DOI: 10.1073/pnas.072699999

Molecular Simulation Study of Peptide Amphiphile Self-Assembly
journal, February 2008

  • Velichko, Yuri S.; Stupp, Samuel I.; de la Cruz, Monica Olvera
  • The Journal of Physical Chemistry B, Vol. 112, Issue 8
  • DOI: 10.1021/jp074420n

pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds
journal, January 2012

  • Lin, Brian F.; Megley, Katie A.; Viswanathan, Nickesh
  • Journal of Materials Chemistry, Vol. 22, Issue 37
  • DOI: 10.1039/c2jm31745a

Induction of Cancer Cell Death by Self-assembling Nanostructures Incorporating a Cytotoxic Peptide
journal, March 2010


Antitumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin
journal, October 2011

  • Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203343z

Switching of self-assembly in a peptide nanostructure with a specific enzyme
journal, January 2011

  • Webber, Matthew J.; Newcomb, Christina J.; Bitton, Ronit
  • Soft Matter, Vol. 7, Issue 20
  • DOI: 10.1039/c1sm05610g

Responsive Vesicles from Dynamic Covalent Surfactants
journal, March 2011

  • Minkenberg, Christophe B.; Li, Feng; van Rijn, Patrick
  • Angewandte Chemie, Vol. 123, Issue 15
  • DOI: 10.1002/ange.201007401

Light-induced self-assembly of nanofibers inside liposomes
journal, January 2008

  • Lee, Hyung-Kun; Soukasene, Stephen; Jiang, Hongzhou
  • Soft Matter, Vol. 4, Issue 5
  • DOI: 10.1039/b719486b

Light-Triggered Bioactivity in Three Dimensions
journal, July 2009

  • Muraoka, Takahiro; Koh, Chung-Yan; Cui, Honggang
  • Angewandte Chemie, Vol. 121, Issue 32
  • DOI: 10.1002/ange.200901524

Prediction of “Aggregation-prone” and “Aggregation-susceptible” Regions in Proteins Associated with Neurodegenerative Diseases
journal, July 2005

  • Pawar, Amol P.; DuBay, Kateri F.; Zurdo, Jesús
  • Journal of Molecular Biology, Vol. 350, Issue 2
  • DOI: 10.1016/j.jmb.2005.04.016

Self-Assembly of Peptide−Amphiphile Nanofibers:  The Roles of Hydrogen Bonding and Amphiphilic Packing
journal, June 2006

  • Paramonov, Sergey E.; Jun, Ho-Wook; Hartgerink, Jeffrey D.
  • Journal of the American Chemical Society, Vol. 128, Issue 22
  • DOI: 10.1021/ja060573x

Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure
journal, May 2010

  • Pashuck, E. Thomas; Cui, Honggang; Stupp, Samuel I.
  • Journal of the American Chemical Society, Vol. 132, Issue 17
  • DOI: 10.1021/ja908560n

Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pH Values and cis -Diols
journal, January 2012


Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours
journal, October 2013


Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model
journal, August 2012

  • Stylianopoulos, Triantafyllos; Soteriou, Konstantinos; Fukumura, Dai
  • Annals of Biomedical Engineering, Vol. 41, Issue 1
  • DOI: 10.1007/s10439-012-0630-4

Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
journal, January 2010

  • Cui, Honggang; Webber, Matthew J.; Stupp, Samuel I.
  • Biopolymers, Vol. 94, Issue 1, p. 1-18
  • DOI: 10.1002/bip.21328

N-Boc-Histidine-Capped PLGA-PEG-PLGA as a Smart Polymer for Drug Delivery Sensitive to Tumor Extracellular pH
journal, June 2010

  • Chang, Guangtao; Li, Chong; Lu, Weiyue
  • Macromolecular Bioscience, Vol. 10, Issue 10
  • DOI: 10.1002/mabi.201000117

Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model
journal, August 2012

  • Stylianopoulos, Triantafyllos; Soteriou, Konstantinos; Fukumura, Dai
  • Annals of Biomedical Engineering, Vol. 41, Issue 1
  • DOI: 10.1007/s10439-012-0630-4

Prediction of “Aggregation-prone” and “Aggregation-susceptible” Regions in Proteins Associated with Neurodegenerative Diseases
journal, July 2005

  • Pawar, Amol P.; DuBay, Kateri F.; Zurdo, Jesús
  • Journal of Molecular Biology, Vol. 350, Issue 2
  • DOI: 10.1016/j.jmb.2005.04.016

Self-Assembly of Peptide−Amphiphile Nanofibers:  The Roles of Hydrogen Bonding and Amphiphilic Packing
journal, June 2006

  • Paramonov, Sergey E.; Jun, Ho-Wook; Hartgerink, Jeffrey D.
  • Journal of the American Chemical Society, Vol. 128, Issue 22
  • DOI: 10.1021/ja060573x

Fine-Tuning the pH Trigger of Self-Assembly
journal, February 2012

  • Ghosh, Arijit; Haverick, Mark; Stump, Keith
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja211113n

Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure
journal, May 2010

  • Pashuck, E. Thomas; Cui, Honggang; Stupp, Samuel I.
  • Journal of the American Chemical Society, Vol. 132, Issue 17
  • DOI: 10.1021/ja908560n

Molecular Simulation Study of Peptide Amphiphile Self-Assembly
journal, February 2008

  • Velichko, Yuri S.; Stupp, Samuel I.; de la Cruz, Monica Olvera
  • The Journal of Physical Chemistry B, Vol. 112, Issue 8
  • DOI: 10.1021/jp074420n

Antitumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin
journal, October 2011

  • Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203343z

Nanocarriers as an emerging platform for cancer therapy
journal, December 2007

  • Peer, Dan; Karp, Jeffrey M.; Hong, Seungpyo
  • Nature Nanotechnology, Vol. 2, Issue 12
  • DOI: 10.1038/nnano.2007.387

Shape effects of filaments versus spherical particles in flow and drug delivery
journal, March 2007

  • Geng, Yan; Dalhaimer, Paul; Cai, Shenshen
  • Nature Nanotechnology, Vol. 2, Issue 4
  • DOI: 10.1038/nnano.2007.70

Light-induced self-assembly of nanofibers inside liposomes
journal, January 2008

  • Lee, Hyung-Kun; Soukasene, Stephen; Jiang, Hongzhou
  • Soft Matter, Vol. 4, Issue 5
  • DOI: 10.1039/b719486b

Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels
journal, January 2012

  • Matson, John B.; Newcomb, Christina J.; Bitton, Ronit
  • Soft Matter, Vol. 8, Issue 13
  • DOI: 10.1039/c2sm07420f

The effect of particle design on cellular internalization pathways
journal, August 2008

  • Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 33, p. 11613-11618
  • DOI: 10.1073/pnas.0801763105

Functional Supramolecular Polymers
journal, February 2012


Works referencing / citing this record:

Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
journal, January 2019

  • Chen, Limin; Feng, Jie; Yang, Dan
  • Chemical Science, Vol. 10, Issue 35
  • DOI: 10.1039/c9sc00193j

A review on virus protein self-assembly
journal, November 2019


A minimal length rigid helical peptide motif allows rational design of modular surfactants
journal, January 2017

  • Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14018

Host Materials Transformable in Tumor Microenvironment for Homing Theranostics
journal, February 2017


Impact of charge switching stimuli on supramolecular perylene monoimide assemblies
journal, January 2019

  • Dannenhoffer, Adam; Sai, Hiroaki; Huang, Dongxu
  • Chemical Science, Vol. 10, Issue 22
  • DOI: 10.1039/c8sc05595e

Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1–hexokinase-II complex
journal, January 2019

  • Liu, Dan; Angelova, Angelina; Liu, Jianwen
  • Journal of Materials Chemistry B, Vol. 7, Issue 30
  • DOI: 10.1039/c9tb00629j

Dual-Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles
journal, June 2019

  • Leung, Franco King-Chi; Kajitani, Takashi; Stuart, Marc C. A.
  • Angewandte Chemie International Edition, Vol. 58, Issue 32
  • DOI: 10.1002/anie.201905445

Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy
journal, January 2020

  • Cai, Ying; Ran, Wei; Zhai, Yihui
  • Biomaterials Science, Vol. 8, Issue 4
  • DOI: 10.1039/c9bm01380f

Self-Assembled Fluorescent Organic Nanomaterials for Biomedical Imaging
journal, August 2018

  • Zhang, Kuo; Gao, Yu-Juan; Yang, Pei-Pei
  • Advanced Healthcare Materials, Vol. 7, Issue 20
  • DOI: 10.1002/adhm.201800344

Peptide self-assembly: thermodynamics and kinetics
journal, January 2016

  • Wang, Juan; Liu, Kai; Xing, Ruirui
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/c6cs00176a

Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy
journal, February 2018


pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier
journal, January 2020


Functional Control of Peptide Amphiphile Assemblies via Modulation of Internal Cohesion and Surface Chemistry Switch
journal, August 2018

  • Lu, Sheng; Cui, Weijia; Li, Jason
  • Chemistry - A European Journal, Vol. 24, Issue 52
  • DOI: 10.1002/chem.201803026

Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids
journal, September 2018

  • Lu, Sheng; Zhao, Feng; Zhang, Qiuxin
  • International Journal of Molecular Sciences, Vol. 19, Issue 9
  • DOI: 10.3390/ijms19092773

Controlling supramolecular polymerization through multicomponent self-assembly
journal, October 2016

  • Besenius, Pol
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 55, Issue 1
  • DOI: 10.1002/pola.28385

The influence of substituents on gelation and stacking order of oligoaramid – based supramolecular networks
journal, January 2019

  • Drechsler, Susanne; Balog, Sandor; Kilbinger, Andreas F. M.
  • Soft Matter, Vol. 15, Issue 36
  • DOI: 10.1039/c9sm00148d

Dual‐Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles
journal, June 2019

  • Leung, Franco King‐Chi; Kajitani, Takashi; Stuart, Marc C. A.
  • Angewandte Chemie, Vol. 131, Issue 32
  • DOI: 10.1002/ange.201905445

Synthesis and Self‐assembly of a Helical Polymer Grafted from a Foldable Polyurethane Scaffold
journal, October 2019

  • Barman, Ranajit; Dey, Pradip; Mondal, Tathagata
  • Chemistry – An Asian Journal, Vol. 14, Issue 24
  • DOI: 10.1002/asia.201901119

Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates
journal, July 2018

  • Otter, Ronja; Henke, Nina Alexandra; Berac, Christian
  • Macromolecular Rapid Communications, Vol. 39, Issue 17
  • DOI: 10.1002/marc.201800459

Supramolecular Nanofibers of Curcumin for Highly Amplified Radiosensitization of Colorectal Cancers to Ionizing Radiation
journal, January 2018

  • Xu, Huae; Wang, Tingting; Yang, Chengbiao
  • Advanced Functional Materials, Vol. 28, Issue 14
  • DOI: 10.1002/adfm.201707140

Peptide supramolecular materials for therapeutics
journal, January 2018

  • Sato, Kohei; Hendricks, Mark P.; Palmer, Liam C.
  • Chemical Society Reviews, Vol. 47, Issue 20
  • DOI: 10.1039/c7cs00735c

Ibuprofen loading and release in amphiphilic peptide FA32 and its derivatives: a coarse-grained molecular dynamics simulation study
journal, August 2015


Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation
journal, August 2015

  • Ji, Tianjiao; Zhao, Ying; Ding, Yanping
  • Angewandte Chemie International Edition, Vol. 55, Issue 3
  • DOI: 10.1002/anie.201506262

Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids
journal, September 2018

  • Lu, Sheng; Zhao, Feng; Zhang, Qiuxin
  • International Journal of Molecular Sciences, Vol. 19, Issue 9
  • DOI: 10.3390/ijms19092773

MMP-2-Controlled Transforming Micelles for Heterogeneic Targeting and Programmable Cancer Therapy
journal, January 2019

  • Wang, Zihua; Wang, Yuehua; Jia, Xiangqian
  • Theranostics, Vol. 9, Issue 6
  • DOI: 10.7150/thno.30915