skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minimum thermal conductivity in superlattices: A first-principles formalism

Abstract

The thermal conductivity of silicon-germanium superlattices is computed here from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency thermoelectric materials.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1160689
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 87; Journal Issue: 14; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Garg, Jivtesh, and Chen, Gang. Minimum thermal conductivity in superlattices: A first-principles formalism. United States: N. p., 2013. Web. doi:10.1103/PhysRevB.87.140302.
Garg, Jivtesh, & Chen, Gang. Minimum thermal conductivity in superlattices: A first-principles formalism. United States. doi:10.1103/PhysRevB.87.140302.
Garg, Jivtesh, and Chen, Gang. Fri . "Minimum thermal conductivity in superlattices: A first-principles formalism". United States. doi:10.1103/PhysRevB.87.140302. https://www.osti.gov/servlets/purl/1160689.
@article{osti_1160689,
title = {Minimum thermal conductivity in superlattices: A first-principles formalism},
author = {Garg, Jivtesh and Chen, Gang},
abstractNote = {The thermal conductivity of silicon-germanium superlattices is computed here from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency thermoelectric materials.},
doi = {10.1103/PhysRevB.87.140302},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 14,
volume = 87,
place = {United States},
year = {2013},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 74 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (Color online) Computed in-plane and cross-plane thermal conductivity of Si/Ge superlattices as a function of superlattice period (Å) at 300 K. Inset shows the computed thermal conductivity of superlattices with perfect interfaces from Ref. 22 at the same temperature.

Save / Share:

Works referenced in this record:

Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques
journal, October 2000


Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study
journal, January 2011


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Interface roughness in Ge/Si superlattices
journal, July 1993

  • Headrick, R. L.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 11, Issue 4
  • DOI: 10.1116/1.586961

Thermal conductivity of symmetrically strained Si/Ge superlattices
journal, September 2000

  • Borca-Tasciuc, Theodorian; Liu, Weili; Liu, Jianlin
  • Superlattices and Microstructures, Vol. 28, Issue 3
  • DOI: 10.1006/spmi.2000.0900

Phonon superlattice transport
journal, November 1997


Isotope scattering of dispersive phonons in Ge
journal, January 1983


Partially coherent phonon heat conduction in superlattices
journal, May 2003


Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Heat transport in silicon from first-principles calculations
journal, August 2011


Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation
journal, May 2007

  • Belkin, Mikhail A.; Capasso, Federico; Belyanin, Alexey
  • Nature Photonics, Vol. 1, Issue 5
  • DOI: 10.1038/nphoton.2007.70

High Thermal Conductivity in Short-Period Superlattices
journal, December 2011

  • Garg, Jivtesh; Bonini, Nicola; Marzari, Nicola
  • Nano Letters, Vol. 11, Issue 12, p. 5135-5141
  • DOI: 10.1021/nl202186y

Thermal conductivity of Si–Ge superlattices
journal, June 1997

  • Lee, S. -M.; Cahill, David G.; Venkatasubramanian, Rama
  • Applied Physics Letters, Vol. 70, Issue 22
  • DOI: 10.1063/1.118755

Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
journal, September 1963


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Phonon group velocity and thermal conduction in superlattices
journal, July 1999

  • Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphrey J.
  • Physical Review B, Vol. 60, Issue 4
  • DOI: 10.1103/PhysRevB.60.2627

Lattice thermal conductivity in superlattices: molecular dynamics calculations with a heat reservoir method
journal, December 2003


Effect of interfacial species mixing on phonon transport in semiconductor superlattices
journal, February 2009


X-ray scattering analysis of interface roughness and diffusion
journal, May 1998

  • Baribeau, J. -M.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 16, Issue 3
  • DOI: 10.1116/1.589941

Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Perturbation expansion of variational principles at arbitrary order
journal, August 1995


Phonon Wave Heat Conduction in Thin Films and Superlattices
journal, November 1999


Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory
journal, August 1995


Vibrations of a mixed crystal: Neutron scattering from Ni 55 Pd 45
journal, August 1974


Ab initio calculation of phonon dispersions in II-VI semiconductors
journal, February 1993


Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
journal, May 1997


Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
journal, May 1994

  • Chen, G.; Tien, C. L.; Wu, X.
  • Journal of Heat Transfer, Vol. 116, Issue 2
  • DOI: 10.1115/1.2911404

Green’s-function approach to linear response in solids
journal, May 1987


Theory of interface scattering of phonons in superlattices
journal, October 2010


Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Lattice thermal conductivity of silicon from empirical interatomic potentials
journal, July 2005


Ab initio calculation of the linewidth of various phonon modes in germanium and silicon
journal, April 2003


Microscale Heat Conduction in Dielectric Thin Films
journal, February 1993


Structure and phase stability of Ga x In 1 x P solid solutions from computational alchemy
journal, June 1994


Phonon dispersions in Ga x Al 1 x As alloys
journal, July 1990

  • Baroni, Stefano; de Gironcoli, Stefano; Giannozzi, Paolo
  • Physical Review Letters, Vol. 65, Issue 1
  • DOI: 10.1103/PhysRevLett.65.84

    Works referencing / citing this record:

    Anderson Localization Quenches Thermal Transport in Aperiodic Superlattices
    journal, March 2019


    First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges
    journal, December 2019

    • Ma, Tengfei; Chakraborty, Pranay; Guo, Xixi
    • International Journal of Thermophysics, Vol. 41, Issue 1
    • DOI: 10.1007/s10765-019-2583-4

    Phonon wave interference and thermal bandgap materials
    journal, June 2015


    On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective
    journal, February 2016


    Coherent control of thermal phonon transport in van der Waals superlattices
    journal, January 2018

    • Guo, Ruiqiang; Jho, Young-Dahl; Minnich, Austin J.
    • Nanoscale, Vol. 10, Issue 30
    • DOI: 10.1039/c8nr02150c

    First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
    journal, January 2015

    • Gu, Xiaokun; Yang, Ronggui
    • Journal of Applied Physics, Vol. 117, Issue 2
    • DOI: 10.1063/1.4905540

    Universal features of phonon transport in nanowires with correlated surface roughness
    journal, March 2015

    • Maurer, L. N.; Aksamija, Z.; Ramayya, E. B.
    • Applied Physics Letters, Vol. 106, Issue 13
    • DOI: 10.1063/1.4916962

    Specular reflection leads to maximum reduction in cross-plane thermal conductivity
    journal, June 2019

    • Maldovan, Martin
    • Journal of Applied Physics, Vol. 125, Issue 22
    • DOI: 10.1063/1.5092341

    Perspective on ab initio phonon thermal transport
    journal, August 2019

    • Lindsay, Lucas; Katre, Ankita; Cepellotti, Andrea
    • Journal of Applied Physics, Vol. 126, Issue 5
    • DOI: 10.1063/1.5108651

    Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices
    journal, October 2015


    Advances in the measurement and computation of thermal phonon transport properties
    journal, January 2015


    Revisiting PbTe to identify how thermal conductivity is really limited
    journal, May 2018


    Designing Nanostructures for Phonon Transport via Bayesian Optimization
    journal, May 2017


    Nanocomposites for thermoelectrics and thermal engineering
    journal, September 2015


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.