DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

Abstract

Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo, and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.

Authors:
 [1];  [2];  [1]
  1. Univ. of Southern California, Los Angeles, CA (United States)
  2. Space Science Institute, Boulder, CO (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1159568
Report Number(s):
LA-UR-14-27991
Journal ID: ISSN 0094-8276; TRN: US1600632
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 41; Journal Issue: 24; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; heliospheric and magnetospheric physics; whistler turbulence

Citation Formats

Hughes, R. Scott, Gary, S. Peter, and Wang, Joseph. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations. United States: N. p., 2014. Web. doi:10.1002/2014GL062070.
Hughes, R. Scott, Gary, S. Peter, & Wang, Joseph. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations. United States. https://doi.org/10.1002/2014GL062070
Hughes, R. Scott, Gary, S. Peter, and Wang, Joseph. Wed . "Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations". United States. https://doi.org/10.1002/2014GL062070. https://www.osti.gov/servlets/purl/1159568.
@article{osti_1159568,
title = {Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations},
author = {Hughes, R. Scott and Gary, S. Peter and Wang, Joseph},
abstractNote = {Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo, and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.},
doi = {10.1002/2014GL062070},
journal = {Geophysical Research Letters},
number = 24,
volume = 41,
place = {United States},
year = {Wed Dec 17 00:00:00 EST 2014},
month = {Wed Dec 17 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic Turbulence
journal, June 2005


Perpendicular ion Heating by Low-Frequency AlfvÉN-Wave Turbulence in the Solar wind
journal, August 2010


Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations: WHISTLER TURBULENCE: PIC SIMULATIONS
journal, June 2013

  • Chang, Ouliang; Gary, S. Peter; Wang, Joseph
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 6
  • DOI: 10.1002/jgra.50365

Energy dissipation by whistler turbulence: Three-dimensional particle-in-cell simulations
journal, May 2014

  • Chang, Ouliang; Peter Gary, S.; Wang, Joseph
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875728

Nature of Subproton Scale Turbulence in the Solar Wind
journal, May 2013


Ion-scale spectral break of solar wind turbulence at high and low beta
journal, November 2014

  • Chen, C. H. K.; Leung, L.; Boldyrev, S.
  • Geophysical Research Letters, Vol. 41, Issue 22
  • DOI: 10.1002/2014GL062009

Origin of the filamentary structure in space plasmas
journal, September 2014


Ensemble Simulations of Proton Heating in the Solar wind via Turbulence and ion Cyclotron Resonance
journal, July 2014


Theory of Space Plasma Microinstabilities
book, January 2009


Particle-in-cell simulations of Alfvén-cyclotron wave scattering: Proton velocity distributions: PROTON VELOCITY DISTRIBUTIONS
journal, May 2003

  • Gary, S. Peter; Saito, Shinji
  • Journal of Geophysical Research: Space Physics, Vol. 108, Issue A5
  • DOI: 10.1029/2002JA009824

Cascade of whistler turbulence: Particle-in-cell simulations
journal, January 2008

  • Gary, S. Peter; Saito, Shinji; Li, Hui
  • Geophysical Research Letters, Vol. 35, Issue 2
  • DOI: 10.1029/2007GL032327

Forward Cascade of Whistler Turbulence: Three-Dimensional Particle-In-Cell Simulations
journal, August 2012


Do Oblique AlfvÉN/Ion-Cyclotron or Fast-Mode/Whistler Waves Dominate the Dissipation of Solar wind Turbulence near the Proton Inertial Length?
journal, December 2011


Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited: PROTON ENERGETICS
journal, September 2011

  • Hellinger, Petr; Matteini, Lorenzo; Štverák, Štěpán
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A9
  • DOI: 10.1029/2011JA016674

Proton thermal energetics in the solar wind: Helios reloaded: PROTON ENERGETICS IN THE SOLAR WIND
journal, April 2013

  • Hellinger, Petr; Trávníček, Pavel M.; Štverák, Štěpán
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1002/jgra.50107

Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction
journal, January 2002


A prescription for the turbulent heating of astrophysical plasmas: A prescription for turbulent heating
journal, October 2010


Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas
journal, February 2008


Howes et al. Reply:
journal, October 2008


Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
journal, July 2011


Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
journal, January 2013

  • Karimabadi, H.; Roytershteyn, V.; Wan, M.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773205

Enhanced Magnetic Compressibility and Isotropic Scale Invariance at Sub-Ion Larmor Scales in Solar wind Turbulence
journal, December 2012


Observational constraints on the dynamics of the interplanetary magnetic field dissipation range
journal, March 1998

  • Leamon, Robert J.; Smith, Charles W.; Ness, Norman F.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A3
  • DOI: 10.1029/97JA03394

Statistical Analysis of the High‐Frequency Spectral Break of the Solar Wind Turbulence at 1 AU
journal, March 2008

  • Markovskii, S. A.; Vasquez, Bernard J.; Smith, Charles W.
  • The Astrophysical Journal, Vol. 675, Issue 2
  • DOI: 10.1086/527431

Dispersion relation analysis of solar wind turbulence: SOLAR WIND TURBULENCE
journal, March 2011

  • Narita, Y.; Gary, S. P.; Saito, S.
  • Geophysical Research Letters, Vol. 38, Issue 5
  • DOI: 10.1029/2010GL046588

Dispersion relation analysis of turbulent magnetic field fluctuations in fast solar wind
journal, January 2013


A Kinetic AlfvÉN wave Cascade Subject to Collisionless Damping Cannot Reach Electron Scales in the Solar wind at 1 au
journal, March 2010


Comment on “Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale”
journal, October 2013


Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind
journal, September 2010


Scaling of the Electron Dissipation Range of Solar wind Turbulence
journal, October 2013


Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations
journal, January 2012

  • Saito, S.; Peter Gary, S.
  • Physics of Plasmas, Vol. 19, Issue 1
  • DOI: 10.1063/1.3676155

Perpendicular ion acceleration in whistler turbulence
journal, April 2014

  • Saito, S.; Nariyuki, Y.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870757

Whistler turbulence: Particle-in-cell simulations
journal, October 2008

  • Saito, Shinji; Gary, S. Peter; Li, Hui
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2997339

Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
journal, December 2010

  • Saito, S.; Gary, S. Peter; Narita, Y.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3526602

Identification of Kinetic AlfvÉN wave Turbulence in the Solar wind
journal, January 2012


Observational Constraints on the role of Cyclotron Damping and Kinetic AlfvÉN Waves in the Solar wind
journal, December 2011

  • Smith, Charles W.; Vasquez, Bernard J.; Hollweg, Joseph V.
  • The Astrophysical Journal, Vol. 745, Issue 1
  • DOI: 10.1088/0004-637X/745/1/8

Particle in cell simulations of fast magnetosonic wave turbulence in the ion cyclotron frequency range
journal, December 2009

  • Svidzinski, V. A.; Li, H.; Rose, H. A.
  • Physics of Plasmas, Vol. 16, Issue 12
  • DOI: 10.1063/1.3274559

Current Sheets and Collisionless Damping in Kinetic Plasma Turbulence
journal, June 2013


Collisionless Damping at Electron Scales in Solar wind Turbulence
journal, August 2013


Rigorous charge conservation for local electromagnetic field solvers
journal, March 1992


von Kármán Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma
journal, September 2013


Perpendicular ion Heating by Reduced Magnetohydrodynamic Turbulence
journal, October 2013

  • Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G.
  • The Astrophysical Journal, Vol. 776, Issue 2
  • DOI: 10.1088/0004-637X/776/2/90

Works referencing / citing this record:

Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
journal, July 2015

  • Miesch, Mark; Matthaeus, William; Brandenburg, Axel
  • Space Science Reviews, Vol. 194, Issue 1-4
  • DOI: 10.1007/s11214-015-0190-7

Statistical Study of the Properties of Magnetosheath Lion Roars
journal, July 2018

  • Giagkiozis, Stefanos; Wilson, Lynn B.; Burch, James L.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 7
  • DOI: 10.1029/2018ja025343

Magnetosonic/whistler mode turbulence influences on ion dynamics
journal, December 2018

  • Saito, S.; Nariyuki, Y.; Umeda, T.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5053760

Ultrafast wave-particle energy transfer in the collapse of standing whistler waves
journal, November 2019


Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations
journal, May 2018

  • Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott
  • The Astrophysical Journal, Vol. 859, Issue 2
  • DOI: 10.3847/1538-4357/aac022

Dependence of Kinetic Plasma Turbulence on Plasma β
journal, August 2018

  • Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.
  • The Astrophysical Journal, Vol. 864, Issue 1
  • DOI: 10.3847/2041-8213/aadb8b

Parallel Electron Heating by Tangential Discontinuity in the Turbulent Magnetosheath
journal, May 2019


Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
text, January 2015