skip to main content


Title: Methylene migration and coupling on a non-reducible metal oxide: The reaction of dichloromethane on stoichiometric α-Cr 2O 3(0001)

The reaction of CH 2Cl 2 over the nearly-stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane and surface chlorine adatoms. The reaction is initiated by the decomposition of CH 2Cl 2 into surface methylene and chlorine. Photoemission indicates that surface cations are the preferred binding sites for both methylene and chlorine adatoms. Two reaction channels are observed for methylene coupling to ethylene in temperature-programmed desorption (TPD). A desorption-limited, low-temperature route is attributed to two methylenes bound at a single site. The majority of ethylene is produced by a reaction-limited process involving surface migration (diffusion) of methylene as the rate-limiting step. DFT calculations indicate the surface diffusion mechanism is mediated by surface oxygen anions. The source of hydrogen for methane formation is adsorbed background water. Chlorine adatoms produced by the dissociation of CH 2Cl 2 deactivate the surface by simple site-blocking of surface Cr 3+ sites. Finally, a comparison of experiment and theory shows that DFT provides a better description of the surface chemistry of the carbene intermediate than DFT+U using reported parameters for a best representation of the bulk electronic properties of α-Cr 2O 3.
 [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Department of Chemical Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Grant/Contract Number:
FG02-97ER14751; AC05-00OR22725; AC02-98CH10886
Accepted Manuscript
Journal Name:
Surface Science
Additional Journal Information:
Journal Volume: 632; Journal ID: ISSN 0039-6028
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Temperature programmed desorption; XPS; Density functional calculations
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1244764