skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

Abstract

To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.

Authors:
 [1];  [2];  [1];  [3];  [4];  [1];  [5];  [1];  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States); MRC Lab. of Molecular Biology, Cambridge (United Kingdom)
  3. California Inst. of Technology (CalTech), Pasadena, CA (United States); Colorado State Univ., Fort Collins, CO (United States)
  4. California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of North Carolina, Chapel Hill, NC (United States)
  5. Gevo, Inc., Englewood, CO (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1128893
Report Number(s):
SLAC-REPRINT-2014-040
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 110; Journal Issue: 27; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; branched-chain amino acid pathway; cofactor imbalance

Citation Formats

Brinkmann-Chen, Sabine, Flock, Tilman, Cahn, Jackson K. B., Snow, Christopher D., Brustad, Eric M., McIntosh, John A., Meinhold, Peter, Zhang, Liang, and Arnold, Frances H. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. United States: N. p., 2013. Web. doi:10.1073/pnas.1306073110.
Brinkmann-Chen, Sabine, Flock, Tilman, Cahn, Jackson K. B., Snow, Christopher D., Brustad, Eric M., McIntosh, John A., Meinhold, Peter, Zhang, Liang, & Arnold, Frances H. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. United States. doi:10.1073/pnas.1306073110.
Brinkmann-Chen, Sabine, Flock, Tilman, Cahn, Jackson K. B., Snow, Christopher D., Brustad, Eric M., McIntosh, John A., Meinhold, Peter, Zhang, Liang, and Arnold, Frances H. Mon . "General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH". United States. doi:10.1073/pnas.1306073110. https://www.osti.gov/servlets/purl/1128893.
@article{osti_1128893,
title = {General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH},
author = {Brinkmann-Chen, Sabine and Flock, Tilman and Cahn, Jackson K. B. and Snow, Christopher D. and Brustad, Eric M. and McIntosh, John A. and Meinhold, Peter and Zhang, Liang and Arnold, Frances H.},
abstractNote = {To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.},
doi = {10.1073/pnas.1306073110},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 27,
volume = 110,
place = {United States},
year = {2013},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enzymology, Structure, and Dynamics of Acetohydroxy Acid Isomeroreductase
journal, May 2001

  • Dumas, Renaud; Biou, Valérie; Halgand, Frédéric
  • Accounts of Chemical Research, Vol. 34, Issue 5
  • DOI: 10.1021/ar000082w

Fermentative production of branched chain amino acids: a focus on metabolic engineering
journal, October 2009


Metabolic engineering of Escherichia coli for 1-butanol production
journal, November 2008

  • Atsumi, Shota; Cann, Anthony F.; Connor, Michael R.
  • Metabolic Engineering, Vol. 10, Issue 6, p. 305-311
  • DOI: 10.1016/j.ymben.2007.08.003

Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
journal, January 2008

  • Atsumi, Shota; Hanai, Taizo; Liao, James C.
  • Nature, Vol. 451, Issue 7174, p. 86-89
  • DOI: 10.1038/nature06450

Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
journal, May 2011

  • Bastian, Sabine; Liu, Xiang; Meyerowitz, Joseph T.
  • Metabolic Engineering, Vol. 13, Issue 3, p. 345-352
  • DOI: 10.1016/j.ymben.2011.02.004

Improvement of the Redox Balance Increases l-Valine Production by Corynebacterium glutamicum under Oxygen Deprivation Conditions
journal, December 2011

  • Hasegawa, Satoshi; Uematsu, Kimio; Natsuma, Yumi
  • Applied and Environmental Microbiology, Vol. 78, Issue 3
  • DOI: 10.1128/AEM.07056-11

Modification of the Nucleotide Cofactor-binding Site of Cytochrome P-450 Reductase to Enhance Turnover with NADH in Vivo
journal, October 2002

  • Elmore, C. Lee; Porter, Todd D.
  • Journal of Biological Chemistry, Vol. 277, Issue 50
  • DOI: 10.1074/jbc.M210173200

Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase
journal, March 2007


The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography
journal, December 2004

  • Petschacher, Barbara; Leitgeb, Stefan; Kavanagh, Kathryn L.
  • Biochemical Journal, Vol. 385, Issue 1
  • DOI: 10.1042/BJ20040363

Engineering of Pyridine Nucleotide Specificity of Nitrate Reductase: Mutagenesis of Recombinant CytochromebReductase Fragment ofNeurospora crassaNADPH:Nitrate Reductase
journal, October 1998

  • Shiraishi, Naomasa; Croy, Cynthia; Kaur, John
  • Archives of Biochemistry and Biophysics, Vol. 358, Issue 1
  • DOI: 10.1006/abbi.1998.0827

Computational design of Candida boidinii xylose reductase for altered cofactor specificity
journal, October 2009

  • Khoury, George A.; Fazelinia, Hossein; Chin, Jonathan W.
  • Protein Science, Vol. 18, Issue 10
  • DOI: 10.1002/pro.227

Reversal of the Nucleotide Specificity of Ketol Acid Reductoisomerase by Site-Directed Mutagenesis Identifies the NADPH Binding Site1
journal, February 1997

  • Rane, Madhavi J.; Calvo, K. C.
  • Archives of Biochemistry and Biophysics, Vol. 338, Issue 1
  • DOI: 10.1006/abbi.1996.9802

Redesign of the coenzyme specificity of a dehydrogenase by protein engineering
journal, January 1990

  • Scrutton, Nigel S.; Berry, Alan; Perham, Richard N.
  • Nature, Vol. 343, Issue 6253
  • DOI: 10.1038/343038a0

Complete Reversal of Coenzyme Specificity by Concerted Mutation of Three Consecutive Residues in Alcohol Dehydrogenase
journal, August 2003

  • Rosell, Albert; Valencia, Eva; Ochoa, Wendy F.
  • Journal of Biological Chemistry, Vol. 278, Issue 42
  • DOI: 10.1074/jbc.M307384200

The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003
journal, January 2003


The crystal structure of a bacterial Class II ketol-acid reductoisomerase: Domain conservation and evolution
journal, December 2005

  • Tyagi, Rajiv; Duquerroy, Stephane; Navaza, Jorge
  • Protein Science, Vol. 14, Issue 12
  • DOI: 10.1110/ps.051791305

Bacterial and Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit during the Catalytic Cycle
journal, December 2012

  • Wong, Sze-Ho; Lonhienne, Thierry G. A.; Winzor, Donald J.
  • Journal of Molecular Biology, Vol. 424, Issue 3-4
  • DOI: 10.1016/j.jmb.2012.09.018

Chemical and biological evolution of a nucleotide-binding protein
journal, July 1974

  • Rossmann, Michael G.; Moras, Dino; Olsen, Kenneth W.
  • Nature, Vol. 250, Issue 5463
  • DOI: 10.1038/250194a0

Interaction of pyrophosphate moieties with .alpha.-helixes in dinucleotide-binding proteins
journal, March 1985

  • Wierenga, Rik K.; De Maeyer, Marc C. H.; Hol, Wim G. J.
  • Biochemistry, Vol. 24, Issue 6
  • DOI: 10.1021/bi00327a012

Crystal Structure of Class I Acetohydroxy Acid Isomeroreductase from Pseudomonas aeruginosa
journal, April 2003


Conformational Changes in a Plant Ketol-Acid Reductoisomerase upon Mg2+ and NADPH Binding as Revealed by Two Crystal Structures
journal, May 2009


Structure of spinach acetohydroxyacid isomeroreductase complexed with its reaction product dihydroxymethylvalerate, manganese and (phospho)-ADP-ribose
journal, April 2000

  • Thomazeau, Karine; Dumas, Renaud; Halgand, Frédéric
  • Acta Crystallographica Section D Biological Crystallography, Vol. 56, Issue 4
  • DOI: 10.1107/S0907444900001694

Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp.
journal, January 1991


Cation-pi interactions in structural biology
journal, August 1999

  • Gallivan, J. P.; Dougherty, D. A.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 17
  • DOI: 10.1073/pnas.96.17.9459

Protein stability promotes evolvability
journal, March 2006

  • Bloom, J. D.; Labthavikul, S. T.; Otey, C. R.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 15, p. 5869-5874
  • DOI: 10.1073/pnas.0510098103

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

Sequence logos: a new way to display consensus sequences
journal, January 1990

  • Schneider, Thomas D.; Stephens, R. Michael
  • Nucleic Acids Research, Vol. 18, Issue 20
  • DOI: 10.1093/nar/18.20.6097

WebLogo: A Sequence Logo Generator
journal, May 2004

  • Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc
  • Genome Research, Vol. 14, Issue 6, p. 1188-1190
  • DOI: 10.1101/gr.849004

Oxalyl hydroxamates as reaction-intermediate analogs for ketol-acid reductoisomerase
journal, March 1990


XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

    Works referencing / citing this record:

    Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris
    journal, December 2017


    Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries
    journal, November 2016

    • Chen, Hui; Zhu, Zhiguang; Huang, Rui
    • Scientific Reports, Vol. 6, Issue 1
    • DOI: 10.1038/srep36311

    Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes
    journal, October 2015

    • Cahn, J. K. B.; Baumschlager, A.; Brinkmann-Chen, S.
    • Protein Engineering Design and Selection
    • DOI: 10.1093/protein/gzv057