DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

Abstract

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1107486
Report Number(s):
PNNL-SA-97112
Journal ID: ISSN 2045-2322; 47476; KC0203020; KC0208010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 3; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; magnesium battery, coordination, efficiency; Environmental Molecular Sciences Laboratory

Citation Formats

Shao, Yuyan, Liu, Tianbiao L., Li, Guosheng, Gu, Meng, Nie, Zimin, Engelhard, Mark H., Xiao, Jie, Lu, Dongping, Wang, Chong M., Zhang, Jiguang, and Liu, Jun. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. United States: N. p., 2013. Web. doi:10.1038/srep03130.
Shao, Yuyan, Liu, Tianbiao L., Li, Guosheng, Gu, Meng, Nie, Zimin, Engelhard, Mark H., Xiao, Jie, Lu, Dongping, Wang, Chong M., Zhang, Jiguang, & Liu, Jun. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. United States. https://doi.org/10.1038/srep03130
Shao, Yuyan, Liu, Tianbiao L., Li, Guosheng, Gu, Meng, Nie, Zimin, Engelhard, Mark H., Xiao, Jie, Lu, Dongping, Wang, Chong M., Zhang, Jiguang, and Liu, Jun. Mon . "Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance". United States. https://doi.org/10.1038/srep03130. https://www.osti.gov/servlets/purl/1107486.
@article{osti_1107486,
title = {Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance},
author = {Shao, Yuyan and Liu, Tianbiao L. and Li, Guosheng and Gu, Meng and Nie, Zimin and Engelhard, Mark H. and Xiao, Jie and Lu, Dongping and Wang, Chong M. and Zhang, Jiguang and Liu, Jun},
abstractNote = {Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.},
doi = {10.1038/srep03130},
journal = {Scientific Reports},
number = ,
volume = 3,
place = {United States},
year = {Mon Nov 04 00:00:00 EST 2013},
month = {Mon Nov 04 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 144 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
journal, June 2012

  • Liu, Jun; Zhang, Ji-Guang; Yang, Zhenguo
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200690

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Study on electrochemically deposited Mg metal
journal, August 2011


Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology
journal, August 2012


Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Progress in Rechargeable Magnesium Battery Technology
journal, December 2007


Electrolyte roadblocks to a magnesium rechargeable battery
journal, January 2012

  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy & Environmental Science, Vol. 5, Issue 3, p. 5941-5950
  • DOI: 10.1039/c2ee03029b

A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl 2 EtBu) 2 /THF Electrolyte
journal, December 2012

  • Lv, Dongping; Xu, Terrence; Saha, Partha
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.085302jes

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Structural Analysis of Electrolyte Solutions for Rechargeable Mg Batteries by Stereoscopic Means and DFT Calculations
journal, April 2011

  • Pour, Nir; Gofer, Yossi; Major, Dan T.
  • Journal of the American Chemical Society, Vol. 133, Issue 16
  • DOI: 10.1021/ja1098512

Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries
journal, January 2008

  • Mizrahi, Oren; Amir, Nir; Pollak, Elad
  • Journal of The Electrochemical Society, Vol. 155, Issue 2, p. A103-A109
  • DOI: 10.1149/1.2806175

Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries
journal, August 2012

  • Guo, Yong-sheng; Zhang, Fan; Yang, Jun
  • Energy & Environmental Science, Vol. 5, Issue 10, p. 9100-9106
  • DOI: 10.1039/c2ee22509c

Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials
journal, February 2010

  • Levi, E.; Gofer, Y.; Aurbach, D.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm9016497

New Insight on the Unusually High Ionic Mobility in Chevrel Phases
journal, April 2009

  • Levi, E.; Gershinsky, G.; Aurbach, D.
  • Chemistry of Materials, Vol. 21, Issue 7
  • DOI: 10.1021/cm900033v

Magnesium cobalt silicate materials for reversible magnesium ion storage
journal, April 2012


Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries
journal, January 2010

  • NuLi, Yanna; Yang, Jun; Li, Yongsheng
  • Chemical Communications, Vol. 46, Issue 21
  • DOI: 10.1039/c002456b

Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases
journal, June 2006

  • Lancry, E.; Levi, E.; Mitelman, A.
  • Journal of Solid State Chemistry, Vol. 179, Issue 6, p. 1879-1882
  • DOI: 10.1016/j.jssc.2006.02.032

Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode
journal, December 2010


First-Principles Study of Zigzag MoS 2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries
journal, December 2011

  • Yang, Siqi; Li, Daixin; Zhang, Tianran
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp2097026

A high energy-density tin anode for rechargeable magnesium-ion batteries
journal, January 2013

  • Singh, Nikhilendra; Arthur, Timothy S.; Ling, Chen
  • Chem. Commun., Vol. 49, Issue 2
  • DOI: 10.1039/C2CC34673G

On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions
journal, May 1999


Nonaqueous Electrochemistry of Magnesium
journal, January 1990

  • Gregory, Thomas D.; Hoffman, Ronald J.; Winterton, Richard C.
  • Journal of The Electrochemical Society, Vol. 137, Issue 3, p. 775-780
  • DOI: 10.1149/1.2086553

A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes
journal, July 2001


A short review on the comparison between Li battery systems and rechargeable magnesium battery technology
journal, July 2001


Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes
journal, January 2002

  • Aurbach, Doron; Gizbar, Haim; Schechter, Alex
  • Journal of The Electrochemical Society, Vol. 149, Issue 2, p. A115-A121
  • DOI: 10.1149/1.1429925

On the Mechanisms of Reversible Magnesium Deposition Processes
journal, January 2001

  • Aurbach, Doron; Schechter, Alexander; Moshkovich, Moty
  • Journal of The Electrochemical Society, Vol. 148, Issue 9
  • DOI: 10.1149/1.1387980

Electrodeposition of Metals from Organic Solutions
journal, January 1957

  • Connor, Jean H.; Reid, Walter E.; Wood, Gwendolyn B.
  • Journal of The Electrochemical Society, Vol. 104, Issue 1
  • DOI: 10.1149/1.2428492

Coordination chemistry of alkali and alkaline earth cations
journal, October 1979

  • Poonia, Narinder S.; Bajaj, Amritlal V.
  • Chemical Reviews, Vol. 79, Issue 5
  • DOI: 10.1021/cr60321a002

Der Chelateffekt
journal, December 1952


The chelate effect in binding, catalysis, and chemotherapy
journal, January 2000

  • Breslow, Ronald; Belvedere, Sandro; Gershell, Leland
  • Pure and Applied Chemistry, Vol. 72, Issue 3
  • DOI: 10.1351/pac200072030333

A Proposed Approach to the Chelate Effect 1
journal, March 1954

  • Adamson, Arthur W.
  • Journal of the American Chemical Society, Vol. 76, Issue 6
  • DOI: 10.1021/ja01635a030

Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-Ion Batteries
journal, January 2013

  • Bond, T. M.; Burns, J. C.; Stevens, D. A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.014304jes

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Conductivity of electrolytes for rechargeable lithium batteries
journal, June 1991


Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Standards for x-ray photoelectron spectroscopy of boron compounds
journal, November 2008


Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium
journal, March 2005


Crystal and molecular structure of magnesium borohydride diglymate
journal, January 1990

  • Lobkovskii, �. B.; Titov, L. V.; Levicheva, M. D.
  • Journal of Structural Chemistry, Vol. 31, Issue 3
  • DOI: 10.1007/BF00743602

X-ray crystallographic investigation of crystals of bis(tetrahydroborato)tris(tetrahydrofuranato)magnesium
journal, January 1983

  • Lobkovskii, E. B.; Titov, L. V.; Psikha, S. B.
  • Journal of Structural Chemistry, Vol. 23, Issue 4
  • DOI: 10.1007/BF00746182

Phase Diagram of Mg Insertion into Chevrel Phases, Mg x Mo 6 T 8 (T = S, Se). 2. The Crystal Structure of Triclinic MgMo 6 Se 8
journal, August 2006

  • Levi, E.; Lancry, E.; Mitelman, A.
  • Chemistry of Materials, Vol. 18, Issue 16
  • DOI: 10.1021/cm060715m

Complexation of lithium, sodium, and potassium carbanion pairs with polyglycol dimethyl ethers (glymes). Effect of chain length and temperature
journal, April 1970

  • Chan, Lock Lim.; Wong, K. H.; Smid, Johannes.
  • Journal of the American Chemical Society, Vol. 92, Issue 7
  • DOI: 10.1021/ja00710a029

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie, Vol. 124, Issue 39
  • DOI: 10.1002/ange.201204913

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, December 2004


Molten Salt Synthesis (MSS) of Cu2Mo6S8 — New Way for Large-Scale Production of Chevrel Phases.
journal, September 2006


Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie, Vol. 124, Issue 39
  • DOI: 10.1002/ange.201204913

ChemInform Abstract: Nanomaterials for Rechargeable Lithium Batteries
journal, June 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • ChemInform, Vol. 39, Issue 26
  • DOI: 10.1002/chin.200826225

Der Chelateffekt
journal, December 1952


Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium
journal, March 2005


New Insight on the Unusually High Ionic Mobility in Chevrel Phases
journal, April 2009

  • Levi, E.; Gershinsky, G.; Aurbach, D.
  • Chemistry of Materials, Vol. 21, Issue 7
  • DOI: 10.1021/cm900033v

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Structural Analysis of Electrolyte Solutions for Rechargeable Mg Batteries by Stereoscopic Means and DFT Calculations
journal, April 2011

  • Pour, Nir; Gofer, Yossi; Major, Dan T.
  • Journal of the American Chemical Society, Vol. 133, Issue 16
  • DOI: 10.1021/ja1098512

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries
journal, January 2010

  • NuLi, Yanna; Yang, Jun; Li, Yongsheng
  • Chemical Communications, Vol. 46, Issue 21
  • DOI: 10.1039/c002456b

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

The chelate effect in binding, catalysis, and chemotherapy
journal, January 2000

  • Breslow, Ronald; Belvedere, Sandro; Gershell, Leland
  • Pure and Applied Chemistry, Vol. 72, Issue 3
  • DOI: 10.1351/pac200072030333

Works referencing / citing this record:

Dual-Salt Mg-Based Batteries with Conversion Cathodes
journal, November 2015

  • Zhang, Ye; Xie, Junjie; Han, Yanlin
  • Advanced Functional Materials, Vol. 25, Issue 47
  • DOI: 10.1002/adfm.201503639

Catechol-Mediated Reversible Binding of Multivalent Cations in Eumelanin Half-Cells
journal, August 2014


A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt
journal, December 2019


Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries
journal, January 2017

  • Zhang, Zhonghua; Cui, Zili; Qiao, Lixin
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602055

Electrochemical-Conditioning-Free and Water-Resistant Hybrid AlCl 3 /MgCl 2 /Mg(TFSI) 2 Electrolytes for Rechargeable Magnesium Batteries
journal, February 2019

  • He, Yishi; Li, Qi; Yang, Lanlan
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201812824

Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review
journal, January 2019

  • Ma, Zheng; MacFarlane, Douglas R.; Kar, Mega
  • Batteries & Supercaps, Vol. 2, Issue 2
  • DOI: 10.1002/batt.201800102

Computational Insights into Mg‐Cl Complex Electrolytes for Rechargeable Magnesium Batteries
journal, June 2019

  • Moss, Jared B.; Zhang, Liping; Nielson, Kevin V.
  • Batteries & Supercaps, Vol. 2, Issue 9
  • DOI: 10.1002/batt.201900029

High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO 4 Anode and a Mg-OMS-1 Cathode
journal, November 2017

  • Zhang, Hongyu; Ye, Ke; Zhu, Kai
  • Chemistry - A European Journal, Vol. 23, Issue 67
  • DOI: 10.1002/chem.201703806

Electrolytes for Batteries with Earth-Abundant Metal Anodes
journal, November 2018

  • Zhao, Hongyang; Xu, Jun; Yin, Dandan
  • Chemistry - A European Journal, Vol. 24, Issue 69
  • DOI: 10.1002/chem.201802438

Improved potassium ion storage performance of graphite by atomic layer deposition of aluminum oxide coatings
journal, May 2020

  • Chen, Jin‐Feng; He, Xiao‐Dong; Li, De‐Jun
  • International Journal of Energy Research, Vol. 44, Issue 6
  • DOI: 10.1002/er.5141

Rechargeable Magnesium Batteries using Conversion-Type Cathodes: A Perspective and Minireview
journal, July 2018


Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries
journal, September 2015


Ionic liquids and their solid-state analogues as materials for energy generation and storage
journal, January 2016

  • MacFarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.
  • Nature Reviews Materials, Vol. 1, Issue 2
  • DOI: 10.1038/natrevmats.2015.5

The renaissance of hydrides as energy materials
journal, December 2016


A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives
journal, May 2018


MoS 2 /graphene cathodes for reversibly storing Mg 2+ and Mg 2+ /Li + in rechargeable magnesium-anode batteries
journal, January 2016

  • Hsu, Cheng-Jui; Chou, Chih-Yu; Yang, Cheng-Hsien
  • Chemical Communications, Vol. 52, Issue 8
  • DOI: 10.1039/c5cc09407k

Highly active electrolytes for rechargeable Mg batteries based on a [Mg 2 (μ-Cl) 2 ] 2+ cation complex in dimethoxyethane
journal, January 2015

  • Cheng, Yingwen; Stolley, Ryan M.; Han, Kee Sung
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 20
  • DOI: 10.1039/c5cp00859j

Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries
journal, January 2017

  • McArthur, Scott G.; Jay, Rahul; Geng, Linxiao
  • Chemical Communications, Vol. 53, Issue 32
  • DOI: 10.1039/c7cc01570d

Eco-compatible oxides enabling energy storage via Li + /Mg 2+ co-intercalation
journal, January 2019

  • Veleva, Sv.; Ivanova, Sv.; Półrolniczak, P.
  • Dalton Transactions, Vol. 48, Issue 36
  • DOI: 10.1039/c9dt02966d

Fast kinetics of Mg 2+ /Li + hybrid ions in a polyanion Li 3 V 2 (PO 4 ) 3 cathode in a wide temperature range
journal, January 2019

  • Rashad, Muhammad; Zhang, Hongzhang; Li, Xianfeng
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c9ta00502a

A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide–magnesium chloride complex for rechargeable magnesium batteries
journal, January 2019

  • Yang, Yuanying; Qiu, Yixiang; NuLi, Yanna
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta05769b

The critical role of configurational flexibility in facilitating reversible reactive metal deposition from borohydride solutions
journal, January 2020

  • Hahn, Nathan T.; Self, Julian; Seguin, Trevor J.
  • Journal of Materials Chemistry A, Vol. 8, Issue 15
  • DOI: 10.1039/d0ta02502j

The Effect of Cyclic Ethers on Mg Plating/Stripping Reaction in Ionic Liquid Electrolytes
journal, November 2018

  • Sagane, Fumihiro; Ogi, Kenta; Konno, Akinori
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0101903jes

Exploring the Synergy of LiBH 4 /NaBH 4 Additives with Mg(BH 4 ) 2 Electrolyte Using Density Functional Theory
journal, January 2018

  • Deetz, Joshua D.; Cao, Fenglei; Sun, Huai
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0171811jes

Synthesis and Characterization of 2 × 4 Tunnel Structured Manganese Dioxides as Cathodes in Rechargeable Li, Na, and Mg Batteries
journal, January 2019

  • Poyraz, Altug S.; Quilty, Calvin D.; Housel, Lisa M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1341902jes

Rechargeable Mg–Li hybrid batteries: status and challenges
journal, September 2016

  • Cheng, Yingwen; Chang, Hee Jung; Dong, Hui
  • Journal of Materials Research, Vol. 31, Issue 20
  • DOI: 10.1557/jmr.2016.331

Lightweight complex metal hydrides for Li-, Na-, and Mg-based batteries
journal, March 2019

  • Guzik, Matylda N.; Mohtadi, Rana; Sartori, Sabrina
  • Journal of Materials Research, Vol. 34, Issue 6
  • DOI: 10.1557/jmr.2019.82

The challenge of developing rechargeable magnesium batteries
journal, May 2014

  • Shterenberg, Ivgeni; Salama, Michael; Gofer, Yossi
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.61

Magnesium batteries: Current state of the art, issues and future perspectives
journal, January 2014

  • Mohtadi, Rana; Mizuno, Fuminori
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.143

Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives
text, January 2018


A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces
journal, February 2017

  • Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42527

Magnesium batteries: Current state of the art, issues and future perspectives
journal, January 2014

  • Mohtadi, Rana; Mizuno, Fuminori
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.143