skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comment on “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”

Authors:
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1103059
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Moussa, Jonathan E. Comment on “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”. United States: N. p., 2012. Web. doi:10.1103/PhysRevLett.109.059801.
Moussa, Jonathan E. Comment on “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”. United States. doi:10.1103/PhysRevLett.109.059801.
Moussa, Jonathan E. Fri . "Comment on “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”". United States. doi:10.1103/PhysRevLett.109.059801.
@article{osti_1103059,
title = {Comment on “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”},
author = {Moussa, Jonathan E.},
abstractNote = {},
doi = {10.1103/PhysRevLett.109.059801},
journal = {Physical Review Letters},
number = 5,
volume = 109,
place = {United States},
year = {2012},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevLett.109.059801

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share: